On the Well‐Posedness of Branched Transportation

We show in full generality the stability of optimal transport paths in branched transport: namely, we prove that any limit of optimal transport paths is optimal as well. This solves an open problem in the field (cf. Open problem 1 in the book Optimal transportation networks by Bernot, Caselles, and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications on pure and applied mathematics 2021-04, Vol.74 (4), p.833-864
Hauptverfasser: Colombo, Maria, De Rosa, Antonio, Marchese, Andrea
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 864
container_issue 4
container_start_page 833
container_title Communications on pure and applied mathematics
container_volume 74
creator Colombo, Maria
De Rosa, Antonio
Marchese, Andrea
description We show in full generality the stability of optimal transport paths in branched transport: namely, we prove that any limit of optimal transport paths is optimal as well. This solves an open problem in the field (cf. Open problem 1 in the book Optimal transportation networks by Bernot, Caselles, and Morel), which has been addressed up to now only under restrictive assumptions. © 2020 Wiley Periodicals LLC
doi_str_mv 10.1002/cpa.21919
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2488882782</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2488882782</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2979-d33776bde76ef18d25d1a8e7ad9a31521565328e1d064a1efaf0ad43c5fe6afc3</originalsourceid><addsrcrecordid>eNp1kL9OwzAQhy0EEqUw8AaRmBjS-uwkjscS8U-q1A5FjJaJz2qqEAc7FerGI_CMPAmGsHLL3U_67k76CLkEOgNK2bzu9YyBBHlEJkClSCkHdkwmlAJNeZHRU3IWwi5GyEo-IWzVJcMWk2ds26-Pz7ULaDoMIXE2ufG6q7dokk0cQu_8oIfGdefkxOo24MVfn5Knu9tN9ZAuV_eP1WKZ1kwKmRrOhSheDIoCLZSG5QZ0iUIbqTnkDPIi56xEMLTINKDVlmqT8Tq3WGhb8ym5Gu_23r3tMQxq5_a-iy8Vy8pYTJQsUtcjVXsXgkeret-8an9QQNWPEhWVqF8lkZ2P7HvT4uF_UFXrxbjxDdFPYnY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2488882782</pqid></control><display><type>article</type><title>On the Well‐Posedness of Branched Transportation</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Colombo, Maria ; De Rosa, Antonio ; Marchese, Andrea</creator><creatorcontrib>Colombo, Maria ; De Rosa, Antonio ; Marchese, Andrea</creatorcontrib><description>We show in full generality the stability of optimal transport paths in branched transport: namely, we prove that any limit of optimal transport paths is optimal as well. This solves an open problem in the field (cf. Open problem 1 in the book Optimal transportation networks by Bernot, Caselles, and Morel), which has been addressed up to now only under restrictive assumptions. © 2020 Wiley Periodicals LLC</description><identifier>ISSN: 0010-3640</identifier><identifier>EISSN: 1097-0312</identifier><identifier>DOI: 10.1002/cpa.21919</identifier><language>eng</language><publisher>Melbourne: John Wiley &amp; Sons Australia, Ltd</publisher><subject>Transportation networks ; Well posed problems</subject><ispartof>Communications on pure and applied mathematics, 2021-04, Vol.74 (4), p.833-864</ispartof><rights>2020 Wiley Periodicals LLC.</rights><rights>2021 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2979-d33776bde76ef18d25d1a8e7ad9a31521565328e1d064a1efaf0ad43c5fe6afc3</citedby><cites>FETCH-LOGICAL-c2979-d33776bde76ef18d25d1a8e7ad9a31521565328e1d064a1efaf0ad43c5fe6afc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcpa.21919$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcpa.21919$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Colombo, Maria</creatorcontrib><creatorcontrib>De Rosa, Antonio</creatorcontrib><creatorcontrib>Marchese, Andrea</creatorcontrib><title>On the Well‐Posedness of Branched Transportation</title><title>Communications on pure and applied mathematics</title><description>We show in full generality the stability of optimal transport paths in branched transport: namely, we prove that any limit of optimal transport paths is optimal as well. This solves an open problem in the field (cf. Open problem 1 in the book Optimal transportation networks by Bernot, Caselles, and Morel), which has been addressed up to now only under restrictive assumptions. © 2020 Wiley Periodicals LLC</description><subject>Transportation networks</subject><subject>Well posed problems</subject><issn>0010-3640</issn><issn>1097-0312</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kL9OwzAQhy0EEqUw8AaRmBjS-uwkjscS8U-q1A5FjJaJz2qqEAc7FerGI_CMPAmGsHLL3U_67k76CLkEOgNK2bzu9YyBBHlEJkClSCkHdkwmlAJNeZHRU3IWwi5GyEo-IWzVJcMWk2ds26-Pz7ULaDoMIXE2ufG6q7dokk0cQu_8oIfGdefkxOo24MVfn5Knu9tN9ZAuV_eP1WKZ1kwKmRrOhSheDIoCLZSG5QZ0iUIbqTnkDPIi56xEMLTINKDVlmqT8Tq3WGhb8ym5Gu_23r3tMQxq5_a-iy8Vy8pYTJQsUtcjVXsXgkeret-8an9QQNWPEhWVqF8lkZ2P7HvT4uF_UFXrxbjxDdFPYnY</recordid><startdate>202104</startdate><enddate>202104</enddate><creator>Colombo, Maria</creator><creator>De Rosa, Antonio</creator><creator>Marchese, Andrea</creator><general>John Wiley &amp; Sons Australia, Ltd</general><general>John Wiley and Sons, Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>202104</creationdate><title>On the Well‐Posedness of Branched Transportation</title><author>Colombo, Maria ; De Rosa, Antonio ; Marchese, Andrea</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2979-d33776bde76ef18d25d1a8e7ad9a31521565328e1d064a1efaf0ad43c5fe6afc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Transportation networks</topic><topic>Well posed problems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Colombo, Maria</creatorcontrib><creatorcontrib>De Rosa, Antonio</creatorcontrib><creatorcontrib>Marchese, Andrea</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Communications on pure and applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Colombo, Maria</au><au>De Rosa, Antonio</au><au>Marchese, Andrea</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Well‐Posedness of Branched Transportation</atitle><jtitle>Communications on pure and applied mathematics</jtitle><date>2021-04</date><risdate>2021</risdate><volume>74</volume><issue>4</issue><spage>833</spage><epage>864</epage><pages>833-864</pages><issn>0010-3640</issn><eissn>1097-0312</eissn><abstract>We show in full generality the stability of optimal transport paths in branched transport: namely, we prove that any limit of optimal transport paths is optimal as well. This solves an open problem in the field (cf. Open problem 1 in the book Optimal transportation networks by Bernot, Caselles, and Morel), which has been addressed up to now only under restrictive assumptions. © 2020 Wiley Periodicals LLC</abstract><cop>Melbourne</cop><pub>John Wiley &amp; Sons Australia, Ltd</pub><doi>10.1002/cpa.21919</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0010-3640
ispartof Communications on pure and applied mathematics, 2021-04, Vol.74 (4), p.833-864
issn 0010-3640
1097-0312
language eng
recordid cdi_proquest_journals_2488882782
source Wiley Online Library Journals Frontfile Complete
subjects Transportation networks
Well posed problems
title On the Well‐Posedness of Branched Transportation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T18%3A17%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Well%E2%80%90Posedness%20of%20Branched%20Transportation&rft.jtitle=Communications%20on%20pure%20and%20applied%20mathematics&rft.au=Colombo,%20Maria&rft.date=2021-04&rft.volume=74&rft.issue=4&rft.spage=833&rft.epage=864&rft.pages=833-864&rft.issn=0010-3640&rft.eissn=1097-0312&rft_id=info:doi/10.1002/cpa.21919&rft_dat=%3Cproquest_cross%3E2488882782%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2488882782&rft_id=info:pmid/&rfr_iscdi=true