Predicting property prices with machine learning algorithms

This study uses three machine learning algorithms including, support vector machine (SVM), random forest (RF) and gradient boosting machine (GBM) in the appraisal of property prices. It applies these methods to examine a data sample of about 40,000 housing transactions in a period of over 18 years i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of property research 2021-01, Vol.38 (1), p.48-70
Hauptverfasser: Ho, Winky K.O., Tang, Bo-Sin, Wong, Siu Wai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 70
container_issue 1
container_start_page 48
container_title Journal of property research
container_volume 38
creator Ho, Winky K.O.
Tang, Bo-Sin
Wong, Siu Wai
description This study uses three machine learning algorithms including, support vector machine (SVM), random forest (RF) and gradient boosting machine (GBM) in the appraisal of property prices. It applies these methods to examine a data sample of about 40,000 housing transactions in a period of over 18 years in Hong Kong, and then compares the results of these algorithms. In terms of predictive power, RF and GBM have achieved better performance when compared to SVM. The three performance metrics including mean squared error (MSE), root mean squared error (RMSE) and mean absolute percentage error (MAPE) associated with these two algorithms also unambiguously outperform those of SVM. However, our study has found that SVM is still a useful algorithm in data fitting because it can produce reasonably accurate predictions within a tight time constraint. Our conclusion is that machine learning offers a promising, alternative technique in property valuation and appraisal research especially in relation to property price prediction.
doi_str_mv 10.1080/09599916.2020.1832558
format Article
fullrecord <record><control><sourceid>proquest_infor</sourceid><recordid>TN_cdi_proquest_journals_2488857194</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2488857194</sourcerecordid><originalsourceid>FETCH-LOGICAL-c418t-50c20147e77d8619ee92f222c657f2a98fc34117ec4abb85a3468c2a1c4b78183</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKs_QVjwvDWTTTYJXpTiFxT0oOeQpkmbsrupyZay_94srVdPM8w88_G-CN0CngEW-B5LJqWEekYwySVREcbEGZoAreuSUlado8nIlCN0ia5S2mJMgFI8QQ-f0a686X23LnYx7Gzsh5x4Y1Nx8P2maLXZ-M4WjdWxGyndrEPMnTZdowunm2RvTnGKvl-ev-Zv5eLj9X3-tCgNBdGXDBuCgXLL-UrUIK2VxBFCTM24I1oKZyoKwK2herkUTFe0FoZoMHTJRZYzRXfHvfnBn71NvdqGfezySUWoEIJxkDRT7EiZGFKK1qkso9VxUIDV6JP680mNPqmTT3nu8TjnOxdiqw8hNivV66EJ0UXdGZ9U9f-KXzSQbl8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2488857194</pqid></control><display><type>article</type><title>Predicting property prices with machine learning algorithms</title><source>EBSCOhost Business Source Complete</source><creator>Ho, Winky K.O. ; Tang, Bo-Sin ; Wong, Siu Wai</creator><creatorcontrib>Ho, Winky K.O. ; Tang, Bo-Sin ; Wong, Siu Wai</creatorcontrib><description>This study uses three machine learning algorithms including, support vector machine (SVM), random forest (RF) and gradient boosting machine (GBM) in the appraisal of property prices. It applies these methods to examine a data sample of about 40,000 housing transactions in a period of over 18 years in Hong Kong, and then compares the results of these algorithms. In terms of predictive power, RF and GBM have achieved better performance when compared to SVM. The three performance metrics including mean squared error (MSE), root mean squared error (RMSE) and mean absolute percentage error (MAPE) associated with these two algorithms also unambiguously outperform those of SVM. However, our study has found that SVM is still a useful algorithm in data fitting because it can produce reasonably accurate predictions within a tight time constraint. Our conclusion is that machine learning offers a promising, alternative technique in property valuation and appraisal research especially in relation to property price prediction.</description><identifier>ISSN: 0959-9916</identifier><identifier>EISSN: 1466-4453</identifier><identifier>DOI: 10.1080/09599916.2020.1832558</identifier><language>eng</language><publisher>Abingdon: Routledge</publisher><subject>Algorithms ; GBM ; Learning algorithms ; Machine learning ; Machine Learning algorithms ; Performance measurement ; property valuation ; Root-mean-square errors ; Support vector machines ; SVM</subject><ispartof>Journal of property research, 2021-01, Vol.38 (1), p.48-70</ispartof><rights>2020 The Author(s). Published by Informa UK Limited, trading as Taylor &amp; Francis Group. 2020</rights><rights>2020 The Author(s). Published by Informa UK Limited, trading as Taylor &amp; Francis Group. This work is licensed under the Creative Commons Attribution – Non-Commercial – No Derivatives License http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c418t-50c20147e77d8619ee92f222c657f2a98fc34117ec4abb85a3468c2a1c4b78183</citedby><cites>FETCH-LOGICAL-c418t-50c20147e77d8619ee92f222c657f2a98fc34117ec4abb85a3468c2a1c4b78183</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Ho, Winky K.O.</creatorcontrib><creatorcontrib>Tang, Bo-Sin</creatorcontrib><creatorcontrib>Wong, Siu Wai</creatorcontrib><title>Predicting property prices with machine learning algorithms</title><title>Journal of property research</title><description>This study uses three machine learning algorithms including, support vector machine (SVM), random forest (RF) and gradient boosting machine (GBM) in the appraisal of property prices. It applies these methods to examine a data sample of about 40,000 housing transactions in a period of over 18 years in Hong Kong, and then compares the results of these algorithms. In terms of predictive power, RF and GBM have achieved better performance when compared to SVM. The three performance metrics including mean squared error (MSE), root mean squared error (RMSE) and mean absolute percentage error (MAPE) associated with these two algorithms also unambiguously outperform those of SVM. However, our study has found that SVM is still a useful algorithm in data fitting because it can produce reasonably accurate predictions within a tight time constraint. Our conclusion is that machine learning offers a promising, alternative technique in property valuation and appraisal research especially in relation to property price prediction.</description><subject>Algorithms</subject><subject>GBM</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Machine Learning algorithms</subject><subject>Performance measurement</subject><subject>property valuation</subject><subject>Root-mean-square errors</subject><subject>Support vector machines</subject><subject>SVM</subject><issn>0959-9916</issn><issn>1466-4453</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>0YH</sourceid><recordid>eNp9kE1LAzEQhoMoWKs_QVjwvDWTTTYJXpTiFxT0oOeQpkmbsrupyZay_94srVdPM8w88_G-CN0CngEW-B5LJqWEekYwySVREcbEGZoAreuSUlado8nIlCN0ia5S2mJMgFI8QQ-f0a686X23LnYx7Gzsh5x4Y1Nx8P2maLXZ-M4WjdWxGyndrEPMnTZdowunm2RvTnGKvl-ev-Zv5eLj9X3-tCgNBdGXDBuCgXLL-UrUIK2VxBFCTM24I1oKZyoKwK2herkUTFe0FoZoMHTJRZYzRXfHvfnBn71NvdqGfezySUWoEIJxkDRT7EiZGFKK1qkso9VxUIDV6JP680mNPqmTT3nu8TjnOxdiqw8hNivV66EJ0UXdGZ9U9f-KXzSQbl8</recordid><startdate>20210102</startdate><enddate>20210102</enddate><creator>Ho, Winky K.O.</creator><creator>Tang, Bo-Sin</creator><creator>Wong, Siu Wai</creator><general>Routledge</general><general>Taylor &amp; Francis Ltd</general><scope>0YH</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210102</creationdate><title>Predicting property prices with machine learning algorithms</title><author>Ho, Winky K.O. ; Tang, Bo-Sin ; Wong, Siu Wai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c418t-50c20147e77d8619ee92f222c657f2a98fc34117ec4abb85a3468c2a1c4b78183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>GBM</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Machine Learning algorithms</topic><topic>Performance measurement</topic><topic>property valuation</topic><topic>Root-mean-square errors</topic><topic>Support vector machines</topic><topic>SVM</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ho, Winky K.O.</creatorcontrib><creatorcontrib>Tang, Bo-Sin</creatorcontrib><creatorcontrib>Wong, Siu Wai</creatorcontrib><collection>Access via Taylor &amp; Francis (Open Access Collection)</collection><collection>CrossRef</collection><jtitle>Journal of property research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ho, Winky K.O.</au><au>Tang, Bo-Sin</au><au>Wong, Siu Wai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting property prices with machine learning algorithms</atitle><jtitle>Journal of property research</jtitle><date>2021-01-02</date><risdate>2021</risdate><volume>38</volume><issue>1</issue><spage>48</spage><epage>70</epage><pages>48-70</pages><issn>0959-9916</issn><eissn>1466-4453</eissn><abstract>This study uses three machine learning algorithms including, support vector machine (SVM), random forest (RF) and gradient boosting machine (GBM) in the appraisal of property prices. It applies these methods to examine a data sample of about 40,000 housing transactions in a period of over 18 years in Hong Kong, and then compares the results of these algorithms. In terms of predictive power, RF and GBM have achieved better performance when compared to SVM. The three performance metrics including mean squared error (MSE), root mean squared error (RMSE) and mean absolute percentage error (MAPE) associated with these two algorithms also unambiguously outperform those of SVM. However, our study has found that SVM is still a useful algorithm in data fitting because it can produce reasonably accurate predictions within a tight time constraint. Our conclusion is that machine learning offers a promising, alternative technique in property valuation and appraisal research especially in relation to property price prediction.</abstract><cop>Abingdon</cop><pub>Routledge</pub><doi>10.1080/09599916.2020.1832558</doi><tpages>23</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0959-9916
ispartof Journal of property research, 2021-01, Vol.38 (1), p.48-70
issn 0959-9916
1466-4453
language eng
recordid cdi_proquest_journals_2488857194
source EBSCOhost Business Source Complete
subjects Algorithms
GBM
Learning algorithms
Machine learning
Machine Learning algorithms
Performance measurement
property valuation
Root-mean-square errors
Support vector machines
SVM
title Predicting property prices with machine learning algorithms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T20%3A39%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20property%20prices%20with%20machine%20learning%20algorithms&rft.jtitle=Journal%20of%20property%20research&rft.au=Ho,%20Winky%20K.O.&rft.date=2021-01-02&rft.volume=38&rft.issue=1&rft.spage=48&rft.epage=70&rft.pages=48-70&rft.issn=0959-9916&rft.eissn=1466-4453&rft_id=info:doi/10.1080/09599916.2020.1832558&rft_dat=%3Cproquest_infor%3E2488857194%3C/proquest_infor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2488857194&rft_id=info:pmid/&rfr_iscdi=true