Optimal control of false discovery criteria in the two‐group model
The highly influential two‐group model in testing a large number of statistical hypotheses assumes that the test statistics are drawn independently from a mixture of a high probability null distribution and a low probability alternative. Optimal control of the marginal false discovery rate (mFDR), i...
Gespeichert in:
Veröffentlicht in: | Journal of the Royal Statistical Society. Series B, Statistical methodology Statistical methodology, 2021-02, Vol.83 (1), p.133-155 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 155 |
---|---|
container_issue | 1 |
container_start_page | 133 |
container_title | Journal of the Royal Statistical Society. Series B, Statistical methodology |
container_volume | 83 |
creator | Heller, Ruth Rosset, Saharon |
description | The highly influential two‐group model in testing a large number of statistical hypotheses assumes that the test statistics are drawn independently from a mixture of a high probability null distribution and a low probability alternative. Optimal control of the marginal false discovery rate (mFDR), in the sense that it provides maximal power (expected true discoveries) subject to mFDR control, is known to be achieved by thresholding the local false discovery rate (locFDR), the probability of the hypothesis being null given the set of test statistics, with a fixed threshold. We address the challenge of controlling optimally the popular false discovery rate (FDR) or positive FDR (pFDR) in the general two‐group model, which also allows for dependence between the test statistics. These criteria are less conservative than the mFDR criterion, so they make more rejections in expectation. We derive their optimal multiple testing (OMT) policies, which turn out to be thresholding the locFDR with a threshold that is a function of the entire set of statistics. We develop an efficient algorithm for finding these policies, and use it for problems with thousands of hypotheses. We illustrate these procedures on gene expression studies. |
doi_str_mv | 10.1111/rssb.12403 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2488847454</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2488847454</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3343-480e7d3649dd5ab0fce773658310c45a6efe810510cdf3b6894d3338c3b48bb63</originalsourceid><addsrcrecordid>eNp9kE1OwzAQhS0EEqWw4QSW2CGl2B3HdpZQfqVKlSisrcR2IFUaBzuh6o4jcEZOgtuw5m1mRvrejOYhdE7JhEZd-RCKCZ0yAgdoRBkXSSa5PIw98CwRjE6P0UkIKxLFBYzQ7aLtqnVeY-2azrsauxKXeR0sNlXQ7tP6Lda-6qyvclw1uHu3uNu4n6_vN-_6Fq-dsfUpOtp7zv7qGL3e373MHpP54uFpdj1PNACDhElihQHOMmPSvCCltkIATyVQolmac1taSUkaJ1NCwWXGDABIDQWTRcFhjC6Gva13H70NnVq53jfxpJoyKSUTLGWRuhwo7V0I3paq9fFFv1WUqF1KapeS2qcUYTrAm6q2239I9bxc3gyeX0uxaoY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2488847454</pqid></control><display><type>article</type><title>Optimal control of false discovery criteria in the two‐group model</title><source>Business Source Complete</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>Wiley Online Library All Journals</source><creator>Heller, Ruth ; Rosset, Saharon</creator><creatorcontrib>Heller, Ruth ; Rosset, Saharon</creatorcontrib><description>The highly influential two‐group model in testing a large number of statistical hypotheses assumes that the test statistics are drawn independently from a mixture of a high probability null distribution and a low probability alternative. Optimal control of the marginal false discovery rate (mFDR), in the sense that it provides maximal power (expected true discoveries) subject to mFDR control, is known to be achieved by thresholding the local false discovery rate (locFDR), the probability of the hypothesis being null given the set of test statistics, with a fixed threshold. We address the challenge of controlling optimally the popular false discovery rate (FDR) or positive FDR (pFDR) in the general two‐group model, which also allows for dependence between the test statistics. These criteria are less conservative than the mFDR criterion, so they make more rejections in expectation. We derive their optimal multiple testing (OMT) policies, which turn out to be thresholding the locFDR with a threshold that is a function of the entire set of statistics. We develop an efficient algorithm for finding these policies, and use it for problems with thousands of hypotheses. We illustrate these procedures on gene expression studies.</description><identifier>ISSN: 1369-7412</identifier><identifier>EISSN: 1467-9868</identifier><identifier>DOI: 10.1111/rssb.12403</identifier><language>eng</language><publisher>Oxford: Oxford University Press</publisher><subject>Algorithms ; Criteria ; Discovery ; false discovery rate ; Gene expression ; Hypotheses ; infinite linear programming ; large‐scale inference ; Model testing ; multiple testing ; Optimal control ; Optimization ; Policies ; positive FDR ; Regression analysis ; Statistical analysis ; Statistical methods ; Statistical tests ; Statistics</subject><ispartof>Journal of the Royal Statistical Society. Series B, Statistical methodology, 2021-02, Vol.83 (1), p.133-155</ispartof><rights>2020 Royal Statistical Society</rights><rights>Copyright © 2021 The Royal Statistical Society and Blackwell Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3343-480e7d3649dd5ab0fce773658310c45a6efe810510cdf3b6894d3338c3b48bb63</citedby><cites>FETCH-LOGICAL-c3343-480e7d3649dd5ab0fce773658310c45a6efe810510cdf3b6894d3338c3b48bb63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Frssb.12403$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Frssb.12403$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Heller, Ruth</creatorcontrib><creatorcontrib>Rosset, Saharon</creatorcontrib><title>Optimal control of false discovery criteria in the two‐group model</title><title>Journal of the Royal Statistical Society. Series B, Statistical methodology</title><description>The highly influential two‐group model in testing a large number of statistical hypotheses assumes that the test statistics are drawn independently from a mixture of a high probability null distribution and a low probability alternative. Optimal control of the marginal false discovery rate (mFDR), in the sense that it provides maximal power (expected true discoveries) subject to mFDR control, is known to be achieved by thresholding the local false discovery rate (locFDR), the probability of the hypothesis being null given the set of test statistics, with a fixed threshold. We address the challenge of controlling optimally the popular false discovery rate (FDR) or positive FDR (pFDR) in the general two‐group model, which also allows for dependence between the test statistics. These criteria are less conservative than the mFDR criterion, so they make more rejections in expectation. We derive their optimal multiple testing (OMT) policies, which turn out to be thresholding the locFDR with a threshold that is a function of the entire set of statistics. We develop an efficient algorithm for finding these policies, and use it for problems with thousands of hypotheses. We illustrate these procedures on gene expression studies.</description><subject>Algorithms</subject><subject>Criteria</subject><subject>Discovery</subject><subject>false discovery rate</subject><subject>Gene expression</subject><subject>Hypotheses</subject><subject>infinite linear programming</subject><subject>large‐scale inference</subject><subject>Model testing</subject><subject>multiple testing</subject><subject>Optimal control</subject><subject>Optimization</subject><subject>Policies</subject><subject>positive FDR</subject><subject>Regression analysis</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><subject>Statistical tests</subject><subject>Statistics</subject><issn>1369-7412</issn><issn>1467-9868</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1OwzAQhS0EEqWw4QSW2CGl2B3HdpZQfqVKlSisrcR2IFUaBzuh6o4jcEZOgtuw5m1mRvrejOYhdE7JhEZd-RCKCZ0yAgdoRBkXSSa5PIw98CwRjE6P0UkIKxLFBYzQ7aLtqnVeY-2azrsauxKXeR0sNlXQ7tP6Lda-6qyvclw1uHu3uNu4n6_vN-_6Fq-dsfUpOtp7zv7qGL3e373MHpP54uFpdj1PNACDhElihQHOMmPSvCCltkIATyVQolmac1taSUkaJ1NCwWXGDABIDQWTRcFhjC6Gva13H70NnVq53jfxpJoyKSUTLGWRuhwo7V0I3paq9fFFv1WUqF1KapeS2qcUYTrAm6q2239I9bxc3gyeX0uxaoY</recordid><startdate>202102</startdate><enddate>202102</enddate><creator>Heller, Ruth</creator><creator>Rosset, Saharon</creator><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8BJ</scope><scope>8FD</scope><scope>FQK</scope><scope>JBE</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>202102</creationdate><title>Optimal control of false discovery criteria in the two‐group model</title><author>Heller, Ruth ; Rosset, Saharon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3343-480e7d3649dd5ab0fce773658310c45a6efe810510cdf3b6894d3338c3b48bb63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Criteria</topic><topic>Discovery</topic><topic>false discovery rate</topic><topic>Gene expression</topic><topic>Hypotheses</topic><topic>infinite linear programming</topic><topic>large‐scale inference</topic><topic>Model testing</topic><topic>multiple testing</topic><topic>Optimal control</topic><topic>Optimization</topic><topic>Policies</topic><topic>positive FDR</topic><topic>Regression analysis</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><topic>Statistical tests</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Heller, Ruth</creatorcontrib><creatorcontrib>Rosset, Saharon</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>Technology Research Database</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of the Royal Statistical Society. Series B, Statistical methodology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Heller, Ruth</au><au>Rosset, Saharon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal control of false discovery criteria in the two‐group model</atitle><jtitle>Journal of the Royal Statistical Society. Series B, Statistical methodology</jtitle><date>2021-02</date><risdate>2021</risdate><volume>83</volume><issue>1</issue><spage>133</spage><epage>155</epage><pages>133-155</pages><issn>1369-7412</issn><eissn>1467-9868</eissn><abstract>The highly influential two‐group model in testing a large number of statistical hypotheses assumes that the test statistics are drawn independently from a mixture of a high probability null distribution and a low probability alternative. Optimal control of the marginal false discovery rate (mFDR), in the sense that it provides maximal power (expected true discoveries) subject to mFDR control, is known to be achieved by thresholding the local false discovery rate (locFDR), the probability of the hypothesis being null given the set of test statistics, with a fixed threshold. We address the challenge of controlling optimally the popular false discovery rate (FDR) or positive FDR (pFDR) in the general two‐group model, which also allows for dependence between the test statistics. These criteria are less conservative than the mFDR criterion, so they make more rejections in expectation. We derive their optimal multiple testing (OMT) policies, which turn out to be thresholding the locFDR with a threshold that is a function of the entire set of statistics. We develop an efficient algorithm for finding these policies, and use it for problems with thousands of hypotheses. We illustrate these procedures on gene expression studies.</abstract><cop>Oxford</cop><pub>Oxford University Press</pub><doi>10.1111/rssb.12403</doi><tpages>23</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1369-7412 |
ispartof | Journal of the Royal Statistical Society. Series B, Statistical methodology, 2021-02, Vol.83 (1), p.133-155 |
issn | 1369-7412 1467-9868 |
language | eng |
recordid | cdi_proquest_journals_2488847454 |
source | Business Source Complete; Oxford University Press Journals All Titles (1996-Current); Wiley Online Library All Journals |
subjects | Algorithms Criteria Discovery false discovery rate Gene expression Hypotheses infinite linear programming large‐scale inference Model testing multiple testing Optimal control Optimization Policies positive FDR Regression analysis Statistical analysis Statistical methods Statistical tests Statistics |
title | Optimal control of false discovery criteria in the two‐group model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T04%3A10%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20control%20of%20false%20discovery%20criteria%20in%20the%20two%E2%80%90group%20model&rft.jtitle=Journal%20of%20the%20Royal%20Statistical%20Society.%20Series%20B,%20Statistical%20methodology&rft.au=Heller,%20Ruth&rft.date=2021-02&rft.volume=83&rft.issue=1&rft.spage=133&rft.epage=155&rft.pages=133-155&rft.issn=1369-7412&rft.eissn=1467-9868&rft_id=info:doi/10.1111/rssb.12403&rft_dat=%3Cproquest_cross%3E2488847454%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2488847454&rft_id=info:pmid/&rfr_iscdi=true |