Extracting local nucleation fields in permanent magnets using machine learning
Microstructural features play an important role in the quality of permanent magnets. The coercivity is greatly influenced by crystallographic defects, like twin boundaries, as is well known for MnAl-C. It would be very useful to be able to predict the macroscopic coercivity from microstructure imagi...
Gespeichert in:
Veröffentlicht in: | npj computational materials 2020-07, Vol.6 (1), Article 89 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | npj computational materials |
container_volume | 6 |
creator | Gusenbauer, Markus Oezelt, Harald Fischbacher, Johann Kovacs, Alexander Zhao, Panpan Woodcock, Thomas George Schrefl, Thomas |
description | Microstructural features play an important role in the quality of permanent magnets. The coercivity is greatly influenced by crystallographic defects, like twin boundaries, as is well known for MnAl-C. It would be very useful to be able to predict the macroscopic coercivity from microstructure imaging. Although this is not possible now, in the present work we examine a related question, namely the prediction of simulated nucleation fields of a quasi-three-dimensional (rescaled and extruded) system constructed from a two-dimensional image. We extract features of the image and analyze them via machine learning. A large number of extruded systems are constructed from 10 × 10 pixel sub-images of an Electron Backscatter Diffraction (EBSD) image using an automated meshing procedure. A local nucleation field is calculated by micromagnetic simulation of each quasi-three-dimensional system. Decision trees, trained with the simulation results, can predict nucleation fields of these quasi-three-dimensional systems from new images within seconds. As for now we cannot quantitatively predict the macroscopic coercivity, nevertheless we can identify weak spots in the magnet and see trends in the nucleation field distribution. |
doi_str_mv | 10.1038/s41524-020-00361-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2488776166</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2488776166</sourcerecordid><originalsourceid>FETCH-LOGICAL-c457t-f32e7a3a488796f164a48024199bd46a39d70c4a8d77757f6d2049b03452d5c63</originalsourceid><addsrcrecordid>eNqFkE1LxDAQhoMouOj-AU8Bz9HJR5PmKMv6AYte9Byyabp2adM1aUH315u1gp70NMPwPO_Ai9AFhSsKvLxOghZMEGBAALikZH-EZgwKRbiWcPxrP0XzlLYAQDUrmYAZely-D9G6oQkb3PbOtjiMrvV2aPqA68a3VcJNwDsfOxt8GHBnN8EPCY_poHTWvTbB42zEkA_n6KS2bfLz73mGXm6Xz4t7snq6e1jcrIgThRpIzZlXlltRlkrLmkqRV2CCar2uhLRcVwqcsGWllCpULSsGQq-Bi4JVhZP8DF1OubvYv40-DWbbjzHkl4YdQpWk8h-KgQZaFjxTbKJc7FOKvja72HQ2fhgK5lCwmQo2uWDzVbDZZ4lPUspw2Pj4E_2H9QkYEXy2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2420901853</pqid></control><display><type>article</type><title>Extracting local nucleation fields in permanent magnets using machine learning</title><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Springer Nature OA Free Journals</source><creator>Gusenbauer, Markus ; Oezelt, Harald ; Fischbacher, Johann ; Kovacs, Alexander ; Zhao, Panpan ; Woodcock, Thomas George ; Schrefl, Thomas</creator><creatorcontrib>Gusenbauer, Markus ; Oezelt, Harald ; Fischbacher, Johann ; Kovacs, Alexander ; Zhao, Panpan ; Woodcock, Thomas George ; Schrefl, Thomas</creatorcontrib><description>Microstructural features play an important role in the quality of permanent magnets. The coercivity is greatly influenced by crystallographic defects, like twin boundaries, as is well known for MnAl-C. It would be very useful to be able to predict the macroscopic coercivity from microstructure imaging. Although this is not possible now, in the present work we examine a related question, namely the prediction of simulated nucleation fields of a quasi-three-dimensional (rescaled and extruded) system constructed from a two-dimensional image. We extract features of the image and analyze them via machine learning. A large number of extruded systems are constructed from 10 × 10 pixel sub-images of an Electron Backscatter Diffraction (EBSD) image using an automated meshing procedure. A local nucleation field is calculated by micromagnetic simulation of each quasi-three-dimensional system. Decision trees, trained with the simulation results, can predict nucleation fields of these quasi-three-dimensional systems from new images within seconds. As for now we cannot quantitatively predict the macroscopic coercivity, nevertheless we can identify weak spots in the magnet and see trends in the nucleation field distribution.</description><identifier>ISSN: 2057-3960</identifier><identifier>EISSN: 2057-3960</identifier><identifier>DOI: 10.1038/s41524-020-00361-z</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/1034/1037 ; 639/301/119/997 ; 639/766/119/997 ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Coercivity ; Computational Intelligence ; Crystal defects ; Crystallography ; Decision trees ; Electron backscatter diffraction ; Extrusion ; Feature extraction ; Learning algorithms ; Machine learning ; Magnetism ; Materials Science ; Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mathematical Modeling and Industrial Mathematics ; Meshing ; Microstructure ; Nucleation ; Permanent magnets ; Simulation ; Theoretical ; Twin boundaries</subject><ispartof>npj computational materials, 2020-07, Vol.6 (1), Article 89</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c457t-f32e7a3a488796f164a48024199bd46a39d70c4a8d77757f6d2049b03452d5c63</citedby><cites>FETCH-LOGICAL-c457t-f32e7a3a488796f164a48024199bd46a39d70c4a8d77757f6d2049b03452d5c63</cites><orcidid>0000-0002-3754-3565 ; 0000-0003-2351-973X ; 0000-0002-0815-5379 ; 0000-0002-3540-3964</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41524-020-00361-z$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://doi.org/10.1038/s41524-020-00361-z$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,27901,27902,41096,42165,51551</link.rule.ids></links><search><creatorcontrib>Gusenbauer, Markus</creatorcontrib><creatorcontrib>Oezelt, Harald</creatorcontrib><creatorcontrib>Fischbacher, Johann</creatorcontrib><creatorcontrib>Kovacs, Alexander</creatorcontrib><creatorcontrib>Zhao, Panpan</creatorcontrib><creatorcontrib>Woodcock, Thomas George</creatorcontrib><creatorcontrib>Schrefl, Thomas</creatorcontrib><title>Extracting local nucleation fields in permanent magnets using machine learning</title><title>npj computational materials</title><addtitle>npj Comput Mater</addtitle><description>Microstructural features play an important role in the quality of permanent magnets. The coercivity is greatly influenced by crystallographic defects, like twin boundaries, as is well known for MnAl-C. It would be very useful to be able to predict the macroscopic coercivity from microstructure imaging. Although this is not possible now, in the present work we examine a related question, namely the prediction of simulated nucleation fields of a quasi-three-dimensional (rescaled and extruded) system constructed from a two-dimensional image. We extract features of the image and analyze them via machine learning. A large number of extruded systems are constructed from 10 × 10 pixel sub-images of an Electron Backscatter Diffraction (EBSD) image using an automated meshing procedure. A local nucleation field is calculated by micromagnetic simulation of each quasi-three-dimensional system. Decision trees, trained with the simulation results, can predict nucleation fields of these quasi-three-dimensional systems from new images within seconds. As for now we cannot quantitatively predict the macroscopic coercivity, nevertheless we can identify weak spots in the magnet and see trends in the nucleation field distribution.</description><subject>639/301/1034/1037</subject><subject>639/301/119/997</subject><subject>639/766/119/997</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Coercivity</subject><subject>Computational Intelligence</subject><subject>Crystal defects</subject><subject>Crystallography</subject><subject>Decision trees</subject><subject>Electron backscatter diffraction</subject><subject>Extrusion</subject><subject>Feature extraction</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Magnetism</subject><subject>Materials Science</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Meshing</subject><subject>Microstructure</subject><subject>Nucleation</subject><subject>Permanent magnets</subject><subject>Simulation</subject><subject>Theoretical</subject><subject>Twin boundaries</subject><issn>2057-3960</issn><issn>2057-3960</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNqFkE1LxDAQhoMouOj-AU8Bz9HJR5PmKMv6AYte9Byyabp2adM1aUH315u1gp70NMPwPO_Ai9AFhSsKvLxOghZMEGBAALikZH-EZgwKRbiWcPxrP0XzlLYAQDUrmYAZely-D9G6oQkb3PbOtjiMrvV2aPqA68a3VcJNwDsfOxt8GHBnN8EPCY_poHTWvTbB42zEkA_n6KS2bfLz73mGXm6Xz4t7snq6e1jcrIgThRpIzZlXlltRlkrLmkqRV2CCar2uhLRcVwqcsGWllCpULSsGQq-Bi4JVhZP8DF1OubvYv40-DWbbjzHkl4YdQpWk8h-KgQZaFjxTbKJc7FOKvja72HQ2fhgK5lCwmQo2uWDzVbDZZ4lPUspw2Pj4E_2H9QkYEXy2</recordid><startdate>20200707</startdate><enddate>20200707</enddate><creator>Gusenbauer, Markus</creator><creator>Oezelt, Harald</creator><creator>Fischbacher, Johann</creator><creator>Kovacs, Alexander</creator><creator>Zhao, Panpan</creator><creator>Woodcock, Thomas George</creator><creator>Schrefl, Thomas</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-3754-3565</orcidid><orcidid>https://orcid.org/0000-0003-2351-973X</orcidid><orcidid>https://orcid.org/0000-0002-0815-5379</orcidid><orcidid>https://orcid.org/0000-0002-3540-3964</orcidid></search><sort><creationdate>20200707</creationdate><title>Extracting local nucleation fields in permanent magnets using machine learning</title><author>Gusenbauer, Markus ; Oezelt, Harald ; Fischbacher, Johann ; Kovacs, Alexander ; Zhao, Panpan ; Woodcock, Thomas George ; Schrefl, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c457t-f32e7a3a488796f164a48024199bd46a39d70c4a8d77757f6d2049b03452d5c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>639/301/1034/1037</topic><topic>639/301/119/997</topic><topic>639/766/119/997</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Coercivity</topic><topic>Computational Intelligence</topic><topic>Crystal defects</topic><topic>Crystallography</topic><topic>Decision trees</topic><topic>Electron backscatter diffraction</topic><topic>Extrusion</topic><topic>Feature extraction</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Magnetism</topic><topic>Materials Science</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Meshing</topic><topic>Microstructure</topic><topic>Nucleation</topic><topic>Permanent magnets</topic><topic>Simulation</topic><topic>Theoretical</topic><topic>Twin boundaries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gusenbauer, Markus</creatorcontrib><creatorcontrib>Oezelt, Harald</creatorcontrib><creatorcontrib>Fischbacher, Johann</creatorcontrib><creatorcontrib>Kovacs, Alexander</creatorcontrib><creatorcontrib>Zhao, Panpan</creatorcontrib><creatorcontrib>Woodcock, Thomas George</creatorcontrib><creatorcontrib>Schrefl, Thomas</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>npj computational materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gusenbauer, Markus</au><au>Oezelt, Harald</au><au>Fischbacher, Johann</au><au>Kovacs, Alexander</au><au>Zhao, Panpan</au><au>Woodcock, Thomas George</au><au>Schrefl, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extracting local nucleation fields in permanent magnets using machine learning</atitle><jtitle>npj computational materials</jtitle><stitle>npj Comput Mater</stitle><date>2020-07-07</date><risdate>2020</risdate><volume>6</volume><issue>1</issue><artnum>89</artnum><issn>2057-3960</issn><eissn>2057-3960</eissn><abstract>Microstructural features play an important role in the quality of permanent magnets. The coercivity is greatly influenced by crystallographic defects, like twin boundaries, as is well known for MnAl-C. It would be very useful to be able to predict the macroscopic coercivity from microstructure imaging. Although this is not possible now, in the present work we examine a related question, namely the prediction of simulated nucleation fields of a quasi-three-dimensional (rescaled and extruded) system constructed from a two-dimensional image. We extract features of the image and analyze them via machine learning. A large number of extruded systems are constructed from 10 × 10 pixel sub-images of an Electron Backscatter Diffraction (EBSD) image using an automated meshing procedure. A local nucleation field is calculated by micromagnetic simulation of each quasi-three-dimensional system. Decision trees, trained with the simulation results, can predict nucleation fields of these quasi-three-dimensional systems from new images within seconds. As for now we cannot quantitatively predict the macroscopic coercivity, nevertheless we can identify weak spots in the magnet and see trends in the nucleation field distribution.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41524-020-00361-z</doi><orcidid>https://orcid.org/0000-0002-3754-3565</orcidid><orcidid>https://orcid.org/0000-0003-2351-973X</orcidid><orcidid>https://orcid.org/0000-0002-0815-5379</orcidid><orcidid>https://orcid.org/0000-0002-3540-3964</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2057-3960 |
ispartof | npj computational materials, 2020-07, Vol.6 (1), Article 89 |
issn | 2057-3960 2057-3960 |
language | eng |
recordid | cdi_proquest_journals_2488776166 |
source | Nature Free; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Springer Nature OA Free Journals |
subjects | 639/301/1034/1037 639/301/119/997 639/766/119/997 Characterization and Evaluation of Materials Chemistry and Materials Science Coercivity Computational Intelligence Crystal defects Crystallography Decision trees Electron backscatter diffraction Extrusion Feature extraction Learning algorithms Machine learning Magnetism Materials Science Mathematical and Computational Engineering Mathematical and Computational Physics Mathematical Modeling and Industrial Mathematics Meshing Microstructure Nucleation Permanent magnets Simulation Theoretical Twin boundaries |
title | Extracting local nucleation fields in permanent magnets using machine learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T12%3A07%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extracting%20local%20nucleation%20fields%20in%20permanent%20magnets%20using%20machine%20learning&rft.jtitle=npj%20computational%20materials&rft.au=Gusenbauer,%20Markus&rft.date=2020-07-07&rft.volume=6&rft.issue=1&rft.artnum=89&rft.issn=2057-3960&rft.eissn=2057-3960&rft_id=info:doi/10.1038/s41524-020-00361-z&rft_dat=%3Cproquest_cross%3E2488776166%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2420901853&rft_id=info:pmid/&rfr_iscdi=true |