Extracting local nucleation fields in permanent magnets using machine learning

Microstructural features play an important role in the quality of permanent magnets. The coercivity is greatly influenced by crystallographic defects, like twin boundaries, as is well known for MnAl-C. It would be very useful to be able to predict the macroscopic coercivity from microstructure imagi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:npj computational materials 2020-07, Vol.6 (1), Article 89
Hauptverfasser: Gusenbauer, Markus, Oezelt, Harald, Fischbacher, Johann, Kovacs, Alexander, Zhao, Panpan, Woodcock, Thomas George, Schrefl, Thomas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title npj computational materials
container_volume 6
creator Gusenbauer, Markus
Oezelt, Harald
Fischbacher, Johann
Kovacs, Alexander
Zhao, Panpan
Woodcock, Thomas George
Schrefl, Thomas
description Microstructural features play an important role in the quality of permanent magnets. The coercivity is greatly influenced by crystallographic defects, like twin boundaries, as is well known for MnAl-C. It would be very useful to be able to predict the macroscopic coercivity from microstructure imaging. Although this is not possible now, in the present work we examine a related question, namely the prediction of simulated nucleation fields of a quasi-three-dimensional (rescaled and extruded) system constructed from a two-dimensional image. We extract features of the image and analyze them via machine learning. A large number of extruded systems are constructed from 10 × 10 pixel sub-images of an Electron Backscatter Diffraction (EBSD) image using an automated meshing procedure. A local nucleation field is calculated by micromagnetic simulation of each quasi-three-dimensional system. Decision trees, trained with the simulation results, can predict nucleation fields of these quasi-three-dimensional systems from new images within seconds. As for now we cannot quantitatively predict the macroscopic coercivity, nevertheless we can identify weak spots in the magnet and see trends in the nucleation field distribution.
doi_str_mv 10.1038/s41524-020-00361-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2488776166</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2488776166</sourcerecordid><originalsourceid>FETCH-LOGICAL-c457t-f32e7a3a488796f164a48024199bd46a39d70c4a8d77757f6d2049b03452d5c63</originalsourceid><addsrcrecordid>eNqFkE1LxDAQhoMouOj-AU8Bz9HJR5PmKMv6AYte9Byyabp2adM1aUH315u1gp70NMPwPO_Ai9AFhSsKvLxOghZMEGBAALikZH-EZgwKRbiWcPxrP0XzlLYAQDUrmYAZely-D9G6oQkb3PbOtjiMrvV2aPqA68a3VcJNwDsfOxt8GHBnN8EPCY_poHTWvTbB42zEkA_n6KS2bfLz73mGXm6Xz4t7snq6e1jcrIgThRpIzZlXlltRlkrLmkqRV2CCar2uhLRcVwqcsGWllCpULSsGQq-Bi4JVhZP8DF1OubvYv40-DWbbjzHkl4YdQpWk8h-KgQZaFjxTbKJc7FOKvja72HQ2fhgK5lCwmQo2uWDzVbDZZ4lPUspw2Pj4E_2H9QkYEXy2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2420901853</pqid></control><display><type>article</type><title>Extracting local nucleation fields in permanent magnets using machine learning</title><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Springer Nature OA Free Journals</source><creator>Gusenbauer, Markus ; Oezelt, Harald ; Fischbacher, Johann ; Kovacs, Alexander ; Zhao, Panpan ; Woodcock, Thomas George ; Schrefl, Thomas</creator><creatorcontrib>Gusenbauer, Markus ; Oezelt, Harald ; Fischbacher, Johann ; Kovacs, Alexander ; Zhao, Panpan ; Woodcock, Thomas George ; Schrefl, Thomas</creatorcontrib><description>Microstructural features play an important role in the quality of permanent magnets. The coercivity is greatly influenced by crystallographic defects, like twin boundaries, as is well known for MnAl-C. It would be very useful to be able to predict the macroscopic coercivity from microstructure imaging. Although this is not possible now, in the present work we examine a related question, namely the prediction of simulated nucleation fields of a quasi-three-dimensional (rescaled and extruded) system constructed from a two-dimensional image. We extract features of the image and analyze them via machine learning. A large number of extruded systems are constructed from 10 × 10 pixel sub-images of an Electron Backscatter Diffraction (EBSD) image using an automated meshing procedure. A local nucleation field is calculated by micromagnetic simulation of each quasi-three-dimensional system. Decision trees, trained with the simulation results, can predict nucleation fields of these quasi-three-dimensional systems from new images within seconds. As for now we cannot quantitatively predict the macroscopic coercivity, nevertheless we can identify weak spots in the magnet and see trends in the nucleation field distribution.</description><identifier>ISSN: 2057-3960</identifier><identifier>EISSN: 2057-3960</identifier><identifier>DOI: 10.1038/s41524-020-00361-z</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/1034/1037 ; 639/301/119/997 ; 639/766/119/997 ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Coercivity ; Computational Intelligence ; Crystal defects ; Crystallography ; Decision trees ; Electron backscatter diffraction ; Extrusion ; Feature extraction ; Learning algorithms ; Machine learning ; Magnetism ; Materials Science ; Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mathematical Modeling and Industrial Mathematics ; Meshing ; Microstructure ; Nucleation ; Permanent magnets ; Simulation ; Theoretical ; Twin boundaries</subject><ispartof>npj computational materials, 2020-07, Vol.6 (1), Article 89</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c457t-f32e7a3a488796f164a48024199bd46a39d70c4a8d77757f6d2049b03452d5c63</citedby><cites>FETCH-LOGICAL-c457t-f32e7a3a488796f164a48024199bd46a39d70c4a8d77757f6d2049b03452d5c63</cites><orcidid>0000-0002-3754-3565 ; 0000-0003-2351-973X ; 0000-0002-0815-5379 ; 0000-0002-3540-3964</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41524-020-00361-z$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://doi.org/10.1038/s41524-020-00361-z$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,27901,27902,41096,42165,51551</link.rule.ids></links><search><creatorcontrib>Gusenbauer, Markus</creatorcontrib><creatorcontrib>Oezelt, Harald</creatorcontrib><creatorcontrib>Fischbacher, Johann</creatorcontrib><creatorcontrib>Kovacs, Alexander</creatorcontrib><creatorcontrib>Zhao, Panpan</creatorcontrib><creatorcontrib>Woodcock, Thomas George</creatorcontrib><creatorcontrib>Schrefl, Thomas</creatorcontrib><title>Extracting local nucleation fields in permanent magnets using machine learning</title><title>npj computational materials</title><addtitle>npj Comput Mater</addtitle><description>Microstructural features play an important role in the quality of permanent magnets. The coercivity is greatly influenced by crystallographic defects, like twin boundaries, as is well known for MnAl-C. It would be very useful to be able to predict the macroscopic coercivity from microstructure imaging. Although this is not possible now, in the present work we examine a related question, namely the prediction of simulated nucleation fields of a quasi-three-dimensional (rescaled and extruded) system constructed from a two-dimensional image. We extract features of the image and analyze them via machine learning. A large number of extruded systems are constructed from 10 × 10 pixel sub-images of an Electron Backscatter Diffraction (EBSD) image using an automated meshing procedure. A local nucleation field is calculated by micromagnetic simulation of each quasi-three-dimensional system. Decision trees, trained with the simulation results, can predict nucleation fields of these quasi-three-dimensional systems from new images within seconds. As for now we cannot quantitatively predict the macroscopic coercivity, nevertheless we can identify weak spots in the magnet and see trends in the nucleation field distribution.</description><subject>639/301/1034/1037</subject><subject>639/301/119/997</subject><subject>639/766/119/997</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Coercivity</subject><subject>Computational Intelligence</subject><subject>Crystal defects</subject><subject>Crystallography</subject><subject>Decision trees</subject><subject>Electron backscatter diffraction</subject><subject>Extrusion</subject><subject>Feature extraction</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Magnetism</subject><subject>Materials Science</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Meshing</subject><subject>Microstructure</subject><subject>Nucleation</subject><subject>Permanent magnets</subject><subject>Simulation</subject><subject>Theoretical</subject><subject>Twin boundaries</subject><issn>2057-3960</issn><issn>2057-3960</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNqFkE1LxDAQhoMouOj-AU8Bz9HJR5PmKMv6AYte9Byyabp2adM1aUH315u1gp70NMPwPO_Ai9AFhSsKvLxOghZMEGBAALikZH-EZgwKRbiWcPxrP0XzlLYAQDUrmYAZely-D9G6oQkb3PbOtjiMrvV2aPqA68a3VcJNwDsfOxt8GHBnN8EPCY_poHTWvTbB42zEkA_n6KS2bfLz73mGXm6Xz4t7snq6e1jcrIgThRpIzZlXlltRlkrLmkqRV2CCar2uhLRcVwqcsGWllCpULSsGQq-Bi4JVhZP8DF1OubvYv40-DWbbjzHkl4YdQpWk8h-KgQZaFjxTbKJc7FOKvja72HQ2fhgK5lCwmQo2uWDzVbDZZ4lPUspw2Pj4E_2H9QkYEXy2</recordid><startdate>20200707</startdate><enddate>20200707</enddate><creator>Gusenbauer, Markus</creator><creator>Oezelt, Harald</creator><creator>Fischbacher, Johann</creator><creator>Kovacs, Alexander</creator><creator>Zhao, Panpan</creator><creator>Woodcock, Thomas George</creator><creator>Schrefl, Thomas</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-3754-3565</orcidid><orcidid>https://orcid.org/0000-0003-2351-973X</orcidid><orcidid>https://orcid.org/0000-0002-0815-5379</orcidid><orcidid>https://orcid.org/0000-0002-3540-3964</orcidid></search><sort><creationdate>20200707</creationdate><title>Extracting local nucleation fields in permanent magnets using machine learning</title><author>Gusenbauer, Markus ; Oezelt, Harald ; Fischbacher, Johann ; Kovacs, Alexander ; Zhao, Panpan ; Woodcock, Thomas George ; Schrefl, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c457t-f32e7a3a488796f164a48024199bd46a39d70c4a8d77757f6d2049b03452d5c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>639/301/1034/1037</topic><topic>639/301/119/997</topic><topic>639/766/119/997</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Coercivity</topic><topic>Computational Intelligence</topic><topic>Crystal defects</topic><topic>Crystallography</topic><topic>Decision trees</topic><topic>Electron backscatter diffraction</topic><topic>Extrusion</topic><topic>Feature extraction</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Magnetism</topic><topic>Materials Science</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Meshing</topic><topic>Microstructure</topic><topic>Nucleation</topic><topic>Permanent magnets</topic><topic>Simulation</topic><topic>Theoretical</topic><topic>Twin boundaries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gusenbauer, Markus</creatorcontrib><creatorcontrib>Oezelt, Harald</creatorcontrib><creatorcontrib>Fischbacher, Johann</creatorcontrib><creatorcontrib>Kovacs, Alexander</creatorcontrib><creatorcontrib>Zhao, Panpan</creatorcontrib><creatorcontrib>Woodcock, Thomas George</creatorcontrib><creatorcontrib>Schrefl, Thomas</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>npj computational materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gusenbauer, Markus</au><au>Oezelt, Harald</au><au>Fischbacher, Johann</au><au>Kovacs, Alexander</au><au>Zhao, Panpan</au><au>Woodcock, Thomas George</au><au>Schrefl, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extracting local nucleation fields in permanent magnets using machine learning</atitle><jtitle>npj computational materials</jtitle><stitle>npj Comput Mater</stitle><date>2020-07-07</date><risdate>2020</risdate><volume>6</volume><issue>1</issue><artnum>89</artnum><issn>2057-3960</issn><eissn>2057-3960</eissn><abstract>Microstructural features play an important role in the quality of permanent magnets. The coercivity is greatly influenced by crystallographic defects, like twin boundaries, as is well known for MnAl-C. It would be very useful to be able to predict the macroscopic coercivity from microstructure imaging. Although this is not possible now, in the present work we examine a related question, namely the prediction of simulated nucleation fields of a quasi-three-dimensional (rescaled and extruded) system constructed from a two-dimensional image. We extract features of the image and analyze them via machine learning. A large number of extruded systems are constructed from 10 × 10 pixel sub-images of an Electron Backscatter Diffraction (EBSD) image using an automated meshing procedure. A local nucleation field is calculated by micromagnetic simulation of each quasi-three-dimensional system. Decision trees, trained with the simulation results, can predict nucleation fields of these quasi-three-dimensional systems from new images within seconds. As for now we cannot quantitatively predict the macroscopic coercivity, nevertheless we can identify weak spots in the magnet and see trends in the nucleation field distribution.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41524-020-00361-z</doi><orcidid>https://orcid.org/0000-0002-3754-3565</orcidid><orcidid>https://orcid.org/0000-0003-2351-973X</orcidid><orcidid>https://orcid.org/0000-0002-0815-5379</orcidid><orcidid>https://orcid.org/0000-0002-3540-3964</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2057-3960
ispartof npj computational materials, 2020-07, Vol.6 (1), Article 89
issn 2057-3960
2057-3960
language eng
recordid cdi_proquest_journals_2488776166
source Nature Free; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Springer Nature OA Free Journals
subjects 639/301/1034/1037
639/301/119/997
639/766/119/997
Characterization and Evaluation of Materials
Chemistry and Materials Science
Coercivity
Computational Intelligence
Crystal defects
Crystallography
Decision trees
Electron backscatter diffraction
Extrusion
Feature extraction
Learning algorithms
Machine learning
Magnetism
Materials Science
Mathematical and Computational Engineering
Mathematical and Computational Physics
Mathematical Modeling and Industrial Mathematics
Meshing
Microstructure
Nucleation
Permanent magnets
Simulation
Theoretical
Twin boundaries
title Extracting local nucleation fields in permanent magnets using machine learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T12%3A07%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extracting%20local%20nucleation%20fields%20in%20permanent%20magnets%20using%20machine%20learning&rft.jtitle=npj%20computational%20materials&rft.au=Gusenbauer,%20Markus&rft.date=2020-07-07&rft.volume=6&rft.issue=1&rft.artnum=89&rft.issn=2057-3960&rft.eissn=2057-3960&rft_id=info:doi/10.1038/s41524-020-00361-z&rft_dat=%3Cproquest_cross%3E2488776166%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2420901853&rft_id=info:pmid/&rfr_iscdi=true