Predicting densities and elastic moduli of SiO2-based glasses by machine learning

Chemical design of SiO 2 -based glasses with high elastic moduli and low weight is of great interest. However, it is difficult to find a universal expression to predict the elastic moduli according to the glass composition before synthesis since the elastic moduli are a complex function of interatom...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:npj computational materials 2020-03, Vol.6 (1), Article 25
Hauptverfasser: Hu, Yong-Jie, Zhao, Ge, Zhang, Mingfei, Bin, Bin, Del Rose, Tyler, Zhao, Qian, Zu, Qun, Chen, Yang, Sun, Xuekun, de Jong, Maarten, Qi, Liang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title npj computational materials
container_volume 6
creator Hu, Yong-Jie
Zhao, Ge
Zhang, Mingfei
Bin, Bin
Del Rose, Tyler
Zhao, Qian
Zu, Qun
Chen, Yang
Sun, Xuekun
de Jong, Maarten
Qi, Liang
description Chemical design of SiO 2 -based glasses with high elastic moduli and low weight is of great interest. However, it is difficult to find a universal expression to predict the elastic moduli according to the glass composition before synthesis since the elastic moduli are a complex function of interatomic bonds and their ordering at different length scales. Here we show that the densities and elastic moduli of SiO 2 -based glasses can be efficiently predicted by machine learning (ML) techniques across a complex compositional space with multiple (>10) types of additive oxides besides SiO 2 . Our machine learning approach relies on a training set generated by high-throughput molecular dynamic (MD) simulations, a set of elaborately constructed descriptors that bridges the empirical statistical modeling with the fundamental physics of interatomic bonding, and a statistical learning/predicting model developed by implementing least absolute shrinkage and selection operator with a gradient boost machine (GBM-LASSO). The predictions of the ML model are comprehensively compared and validated with a large amount of both simulation and experimental data. By just training with a dataset only composed of binary and ternary glass samples, our model shows very promising capabilities to predict the density and elastic moduli for k-nary SiO 2 -based glasses beyond the training set. As an example of its potential applications, our GBM-LASSO model was used to perform a rapid and low-cost screening of many (~10 5 ) compositions of a multicomponent glass system to construct a compositional-property database that allows for a fruitful overview on the glass density and elastic properties.
doi_str_mv 10.1038/s41524-020-0291-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2488776048</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2488776048</sourcerecordid><originalsourceid>FETCH-LOGICAL-c453t-83b7643f97f9bf37c2006a72f67b492330488edef934bc80241f3b3ea328ef803</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWGp_gLeA59VJJt0kRyl-QaGKeg7Z3aSmtLs12R7aX2_KCnrRw5CBPO8z8BJyyeCaAaqbJNiUiwI45NGsOJyQEYepLFCXcPprPyeTlFYAwDRXXMCIvDxH14S6D-2SNq5NoQ8uUds21K1t6kNNN12zWwfaefoaFryobHINXebPlMFqTze2_gito2tnY5s1F-TM23Vyk-93TN7v795mj8V88fA0u50XtZhiXyisZCnQa-l15VHWHKC0kvtSVkJzRBBKucZ5jaKqFXDBPFboLHLlvAIck6vBu43d586l3qy6XWzzScNzVMoyG_6lUAEgR6EzxQaqjl1K0XmzjWFj494wMMeKzVCxyRWbY8XmkDN8yKTMtksXf8x_h74AvAl8zg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2380032349</pqid></control><display><type>article</type><title>Predicting densities and elastic moduli of SiO2-based glasses by machine learning</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><creator>Hu, Yong-Jie ; Zhao, Ge ; Zhang, Mingfei ; Bin, Bin ; Del Rose, Tyler ; Zhao, Qian ; Zu, Qun ; Chen, Yang ; Sun, Xuekun ; de Jong, Maarten ; Qi, Liang</creator><creatorcontrib>Hu, Yong-Jie ; Zhao, Ge ; Zhang, Mingfei ; Bin, Bin ; Del Rose, Tyler ; Zhao, Qian ; Zu, Qun ; Chen, Yang ; Sun, Xuekun ; de Jong, Maarten ; Qi, Liang</creatorcontrib><description>Chemical design of SiO 2 -based glasses with high elastic moduli and low weight is of great interest. However, it is difficult to find a universal expression to predict the elastic moduli according to the glass composition before synthesis since the elastic moduli are a complex function of interatomic bonds and their ordering at different length scales. Here we show that the densities and elastic moduli of SiO 2 -based glasses can be efficiently predicted by machine learning (ML) techniques across a complex compositional space with multiple (&gt;10) types of additive oxides besides SiO 2 . Our machine learning approach relies on a training set generated by high-throughput molecular dynamic (MD) simulations, a set of elaborately constructed descriptors that bridges the empirical statistical modeling with the fundamental physics of interatomic bonding, and a statistical learning/predicting model developed by implementing least absolute shrinkage and selection operator with a gradient boost machine (GBM-LASSO). The predictions of the ML model are comprehensively compared and validated with a large amount of both simulation and experimental data. By just training with a dataset only composed of binary and ternary glass samples, our model shows very promising capabilities to predict the density and elastic moduli for k-nary SiO 2 -based glasses beyond the training set. As an example of its potential applications, our GBM-LASSO model was used to perform a rapid and low-cost screening of many (~10 5 ) compositions of a multicomponent glass system to construct a compositional-property database that allows for a fruitful overview on the glass density and elastic properties.</description><identifier>ISSN: 2057-3960</identifier><identifier>EISSN: 2057-3960</identifier><identifier>DOI: 10.1038/s41524-020-0291-z</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/1023/218 ; 639/301/1034 ; Characterization and Evaluation of Materials ; Chemical bonds ; Chemistry and Materials Science ; Composition ; Computational Intelligence ; Computer simulation ; Density ; Elastic properties ; Glass ; Learning algorithms ; Machine learning ; Materials Science ; Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mathematical Modeling and Industrial Mathematics ; Mathematical models ; Modulus of elasticity ; Molecular dynamics ; Silicon dioxide ; Statistical methods ; Statistical models ; Theoretical ; Training</subject><ispartof>npj computational materials, 2020-03, Vol.6 (1), Article 25</ispartof><rights>The Author(s) 2020</rights><rights>This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c453t-83b7643f97f9bf37c2006a72f67b492330488edef934bc80241f3b3ea328ef803</citedby><cites>FETCH-LOGICAL-c453t-83b7643f97f9bf37c2006a72f67b492330488edef934bc80241f3b3ea328ef803</cites><orcidid>0000-0002-6038-2907 ; 0000-0003-1500-4015</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41524-020-0291-z$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://doi.org/10.1038/s41524-020-0291-z$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,27924,27925,41120,42189,51576</link.rule.ids></links><search><creatorcontrib>Hu, Yong-Jie</creatorcontrib><creatorcontrib>Zhao, Ge</creatorcontrib><creatorcontrib>Zhang, Mingfei</creatorcontrib><creatorcontrib>Bin, Bin</creatorcontrib><creatorcontrib>Del Rose, Tyler</creatorcontrib><creatorcontrib>Zhao, Qian</creatorcontrib><creatorcontrib>Zu, Qun</creatorcontrib><creatorcontrib>Chen, Yang</creatorcontrib><creatorcontrib>Sun, Xuekun</creatorcontrib><creatorcontrib>de Jong, Maarten</creatorcontrib><creatorcontrib>Qi, Liang</creatorcontrib><title>Predicting densities and elastic moduli of SiO2-based glasses by machine learning</title><title>npj computational materials</title><addtitle>npj Comput Mater</addtitle><description>Chemical design of SiO 2 -based glasses with high elastic moduli and low weight is of great interest. However, it is difficult to find a universal expression to predict the elastic moduli according to the glass composition before synthesis since the elastic moduli are a complex function of interatomic bonds and their ordering at different length scales. Here we show that the densities and elastic moduli of SiO 2 -based glasses can be efficiently predicted by machine learning (ML) techniques across a complex compositional space with multiple (&gt;10) types of additive oxides besides SiO 2 . Our machine learning approach relies on a training set generated by high-throughput molecular dynamic (MD) simulations, a set of elaborately constructed descriptors that bridges the empirical statistical modeling with the fundamental physics of interatomic bonding, and a statistical learning/predicting model developed by implementing least absolute shrinkage and selection operator with a gradient boost machine (GBM-LASSO). The predictions of the ML model are comprehensively compared and validated with a large amount of both simulation and experimental data. By just training with a dataset only composed of binary and ternary glass samples, our model shows very promising capabilities to predict the density and elastic moduli for k-nary SiO 2 -based glasses beyond the training set. As an example of its potential applications, our GBM-LASSO model was used to perform a rapid and low-cost screening of many (~10 5 ) compositions of a multicomponent glass system to construct a compositional-property database that allows for a fruitful overview on the glass density and elastic properties.</description><subject>639/301/1023/218</subject><subject>639/301/1034</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemical bonds</subject><subject>Chemistry and Materials Science</subject><subject>Composition</subject><subject>Computational Intelligence</subject><subject>Computer simulation</subject><subject>Density</subject><subject>Elastic properties</subject><subject>Glass</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Materials Science</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Mathematical models</subject><subject>Modulus of elasticity</subject><subject>Molecular dynamics</subject><subject>Silicon dioxide</subject><subject>Statistical methods</subject><subject>Statistical models</subject><subject>Theoretical</subject><subject>Training</subject><issn>2057-3960</issn><issn>2057-3960</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE1LAzEQhoMoWGp_gLeA59VJJt0kRyl-QaGKeg7Z3aSmtLs12R7aX2_KCnrRw5CBPO8z8BJyyeCaAaqbJNiUiwI45NGsOJyQEYepLFCXcPprPyeTlFYAwDRXXMCIvDxH14S6D-2SNq5NoQ8uUds21K1t6kNNN12zWwfaefoaFryobHINXebPlMFqTze2_gito2tnY5s1F-TM23Vyk-93TN7v795mj8V88fA0u50XtZhiXyisZCnQa-l15VHWHKC0kvtSVkJzRBBKucZ5jaKqFXDBPFboLHLlvAIck6vBu43d586l3qy6XWzzScNzVMoyG_6lUAEgR6EzxQaqjl1K0XmzjWFj494wMMeKzVCxyRWbY8XmkDN8yKTMtksXf8x_h74AvAl8zg</recordid><startdate>20200320</startdate><enddate>20200320</enddate><creator>Hu, Yong-Jie</creator><creator>Zhao, Ge</creator><creator>Zhang, Mingfei</creator><creator>Bin, Bin</creator><creator>Del Rose, Tyler</creator><creator>Zhao, Qian</creator><creator>Zu, Qun</creator><creator>Chen, Yang</creator><creator>Sun, Xuekun</creator><creator>de Jong, Maarten</creator><creator>Qi, Liang</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-6038-2907</orcidid><orcidid>https://orcid.org/0000-0003-1500-4015</orcidid></search><sort><creationdate>20200320</creationdate><title>Predicting densities and elastic moduli of SiO2-based glasses by machine learning</title><author>Hu, Yong-Jie ; Zhao, Ge ; Zhang, Mingfei ; Bin, Bin ; Del Rose, Tyler ; Zhao, Qian ; Zu, Qun ; Chen, Yang ; Sun, Xuekun ; de Jong, Maarten ; Qi, Liang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c453t-83b7643f97f9bf37c2006a72f67b492330488edef934bc80241f3b3ea328ef803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>639/301/1023/218</topic><topic>639/301/1034</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemical bonds</topic><topic>Chemistry and Materials Science</topic><topic>Composition</topic><topic>Computational Intelligence</topic><topic>Computer simulation</topic><topic>Density</topic><topic>Elastic properties</topic><topic>Glass</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Materials Science</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Mathematical models</topic><topic>Modulus of elasticity</topic><topic>Molecular dynamics</topic><topic>Silicon dioxide</topic><topic>Statistical methods</topic><topic>Statistical models</topic><topic>Theoretical</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Yong-Jie</creatorcontrib><creatorcontrib>Zhao, Ge</creatorcontrib><creatorcontrib>Zhang, Mingfei</creatorcontrib><creatorcontrib>Bin, Bin</creatorcontrib><creatorcontrib>Del Rose, Tyler</creatorcontrib><creatorcontrib>Zhao, Qian</creatorcontrib><creatorcontrib>Zu, Qun</creatorcontrib><creatorcontrib>Chen, Yang</creatorcontrib><creatorcontrib>Sun, Xuekun</creatorcontrib><creatorcontrib>de Jong, Maarten</creatorcontrib><creatorcontrib>Qi, Liang</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>npj computational materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Yong-Jie</au><au>Zhao, Ge</au><au>Zhang, Mingfei</au><au>Bin, Bin</au><au>Del Rose, Tyler</au><au>Zhao, Qian</au><au>Zu, Qun</au><au>Chen, Yang</au><au>Sun, Xuekun</au><au>de Jong, Maarten</au><au>Qi, Liang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting densities and elastic moduli of SiO2-based glasses by machine learning</atitle><jtitle>npj computational materials</jtitle><stitle>npj Comput Mater</stitle><date>2020-03-20</date><risdate>2020</risdate><volume>6</volume><issue>1</issue><artnum>25</artnum><issn>2057-3960</issn><eissn>2057-3960</eissn><abstract>Chemical design of SiO 2 -based glasses with high elastic moduli and low weight is of great interest. However, it is difficult to find a universal expression to predict the elastic moduli according to the glass composition before synthesis since the elastic moduli are a complex function of interatomic bonds and their ordering at different length scales. Here we show that the densities and elastic moduli of SiO 2 -based glasses can be efficiently predicted by machine learning (ML) techniques across a complex compositional space with multiple (&gt;10) types of additive oxides besides SiO 2 . Our machine learning approach relies on a training set generated by high-throughput molecular dynamic (MD) simulations, a set of elaborately constructed descriptors that bridges the empirical statistical modeling with the fundamental physics of interatomic bonding, and a statistical learning/predicting model developed by implementing least absolute shrinkage and selection operator with a gradient boost machine (GBM-LASSO). The predictions of the ML model are comprehensively compared and validated with a large amount of both simulation and experimental data. By just training with a dataset only composed of binary and ternary glass samples, our model shows very promising capabilities to predict the density and elastic moduli for k-nary SiO 2 -based glasses beyond the training set. As an example of its potential applications, our GBM-LASSO model was used to perform a rapid and low-cost screening of many (~10 5 ) compositions of a multicomponent glass system to construct a compositional-property database that allows for a fruitful overview on the glass density and elastic properties.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41524-020-0291-z</doi><orcidid>https://orcid.org/0000-0002-6038-2907</orcidid><orcidid>https://orcid.org/0000-0003-1500-4015</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2057-3960
ispartof npj computational materials, 2020-03, Vol.6 (1), Article 25
issn 2057-3960
2057-3960
language eng
recordid cdi_proquest_journals_2488776048
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Springer Nature OA Free Journals; Nature Free
subjects 639/301/1023/218
639/301/1034
Characterization and Evaluation of Materials
Chemical bonds
Chemistry and Materials Science
Composition
Computational Intelligence
Computer simulation
Density
Elastic properties
Glass
Learning algorithms
Machine learning
Materials Science
Mathematical and Computational Engineering
Mathematical and Computational Physics
Mathematical Modeling and Industrial Mathematics
Mathematical models
Modulus of elasticity
Molecular dynamics
Silicon dioxide
Statistical methods
Statistical models
Theoretical
Training
title Predicting densities and elastic moduli of SiO2-based glasses by machine learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T16%3A46%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20densities%20and%20elastic%20moduli%20of%20SiO2-based%20glasses%20by%20machine%20learning&rft.jtitle=npj%20computational%20materials&rft.au=Hu,%20Yong-Jie&rft.date=2020-03-20&rft.volume=6&rft.issue=1&rft.artnum=25&rft.issn=2057-3960&rft.eissn=2057-3960&rft_id=info:doi/10.1038/s41524-020-0291-z&rft_dat=%3Cproquest_cross%3E2488776048%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2380032349&rft_id=info:pmid/&rfr_iscdi=true