Experimental neural network enhanced quantum tomography
Quantum tomography is currently ubiquitous for testing any implementation of a quantum information processing device. Various sophisticated procedures for state and process reconstruction from measured data are well developed and benefit from precise knowledge of the model describing state-preparati...
Gespeichert in:
Veröffentlicht in: | npj quantum information 2020-02, Vol.6 (1), Article 20 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | npj quantum information |
container_volume | 6 |
creator | Palmieri, Adriano Macarone Kovlakov, Egor Bianchi, Federico Yudin, Dmitry Straupe, Stanislav Biamonte, Jacob D. Kulik, Sergei |
description | Quantum tomography is currently ubiquitous for testing any implementation of a quantum information processing device. Various sophisticated procedures for state and process reconstruction from measured data are well developed and benefit from precise knowledge of the model describing state-preparation-and-measurement (SPAM) apparatus. However, physical models suffer from intrinsic limitations as actual measurement operators and trial states cannot be known precisely. This scenario inevitably leads to SPAM errors degrading reconstruction performance. Here we develop a framework based on machine learning which generally applies to both the tomography and SPAM mitigation problem. We experimentally implement our method. We trained a supervised neural network to filter the experimental data and hence uncovered salient patterns that characterize the measurement probabilities for the original state and the ideal experimental apparatus free from SPAM errors. We compared the neural network state reconstruction protocol with a protocol treating SPAM errors by process tomography, as well as to an SPAM-agnostic protocol with idealized measurements. The average reconstruction fidelity is shown to be enhanced by 10% and 27%, respectively. The presented methods apply to the vast range of quantum experiments which rely on tomography. |
doi_str_mv | 10.1038/s41534-020-0248-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2488773159</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2488773159</sourcerecordid><originalsourceid>FETCH-LOGICAL-c453t-608d0a9dadb96b8eb0cfb4bb30d70e43e1757032974d13a54e3d64d375d2b8da3</originalsourceid><addsrcrecordid>eNp9kEtPwzAQhC0EElXpD-AWiXNg_XaOqCoPqRIXOFt27LSU1kntRNB_j0uQ4AKH1ezhm13NIHSJ4RoDVTeJYU5ZCQTyMFWKEzQhwEUpqJKnv_ZzNEtpAwC4IoowPEFy8dH5-LrzoTfbIvghfkn_3sa3woe1CbV3xX4woR92Rd_u2lU03fpwgc4as01-9q1T9HK3eJ4_lMun-8f57bKsGad9KUA5MJUzzlbCKm-hbiyzloKT4Bn1WHIJlFSSOUwNZ546wRyV3BGrnKFTdDXe7WK7H3zq9aYdYsgvdU6qpKSYV_9SlBNKcA6fKTxSdWxTir7RXU5u4kFj0Mci9VikzkXqY5FaZA8ZPSmzYeXjz-W_TZ8NjnSU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2352321387</pqid></control><display><type>article</type><title>Experimental neural network enhanced quantum tomography</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><creator>Palmieri, Adriano Macarone ; Kovlakov, Egor ; Bianchi, Federico ; Yudin, Dmitry ; Straupe, Stanislav ; Biamonte, Jacob D. ; Kulik, Sergei</creator><creatorcontrib>Palmieri, Adriano Macarone ; Kovlakov, Egor ; Bianchi, Federico ; Yudin, Dmitry ; Straupe, Stanislav ; Biamonte, Jacob D. ; Kulik, Sergei</creatorcontrib><description>Quantum tomography is currently ubiquitous for testing any implementation of a quantum information processing device. Various sophisticated procedures for state and process reconstruction from measured data are well developed and benefit from precise knowledge of the model describing state-preparation-and-measurement (SPAM) apparatus. However, physical models suffer from intrinsic limitations as actual measurement operators and trial states cannot be known precisely. This scenario inevitably leads to SPAM errors degrading reconstruction performance. Here we develop a framework based on machine learning which generally applies to both the tomography and SPAM mitigation problem. We experimentally implement our method. We trained a supervised neural network to filter the experimental data and hence uncovered salient patterns that characterize the measurement probabilities for the original state and the ideal experimental apparatus free from SPAM errors. We compared the neural network state reconstruction protocol with a protocol treating SPAM errors by process tomography, as well as to an SPAM-agnostic protocol with idealized measurements. The average reconstruction fidelity is shown to be enhanced by 10% and 27%, respectively. The presented methods apply to the vast range of quantum experiments which rely on tomography.</description><identifier>ISSN: 2056-6387</identifier><identifier>EISSN: 2056-6387</identifier><identifier>DOI: 10.1038/s41534-020-0248-6</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/624/400/3925 ; 639/766/483/481 ; Classical and Quantum Gravitation ; Information processing ; Learning algorithms ; Machine learning ; Neural networks ; Physics ; Physics and Astronomy ; Quantum Computing ; Quantum Field Theories ; Quantum Information Technology ; Quantum Physics ; Relativity Theory ; Spintronics ; String Theory ; Tomography</subject><ispartof>npj quantum information, 2020-02, Vol.6 (1), Article 20</ispartof><rights>The Author(s) 2020</rights><rights>This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c453t-608d0a9dadb96b8eb0cfb4bb30d70e43e1757032974d13a54e3d64d375d2b8da3</citedby><cites>FETCH-LOGICAL-c453t-608d0a9dadb96b8eb0cfb4bb30d70e43e1757032974d13a54e3d64d375d2b8da3</cites><orcidid>0000-0001-9810-1958 ; 0000-0002-0590-3327</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41534-020-0248-6$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://doi.org/10.1038/s41534-020-0248-6$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,27924,27925,41120,42189,51576</link.rule.ids></links><search><creatorcontrib>Palmieri, Adriano Macarone</creatorcontrib><creatorcontrib>Kovlakov, Egor</creatorcontrib><creatorcontrib>Bianchi, Federico</creatorcontrib><creatorcontrib>Yudin, Dmitry</creatorcontrib><creatorcontrib>Straupe, Stanislav</creatorcontrib><creatorcontrib>Biamonte, Jacob D.</creatorcontrib><creatorcontrib>Kulik, Sergei</creatorcontrib><title>Experimental neural network enhanced quantum tomography</title><title>npj quantum information</title><addtitle>npj Quantum Inf</addtitle><description>Quantum tomography is currently ubiquitous for testing any implementation of a quantum information processing device. Various sophisticated procedures for state and process reconstruction from measured data are well developed and benefit from precise knowledge of the model describing state-preparation-and-measurement (SPAM) apparatus. However, physical models suffer from intrinsic limitations as actual measurement operators and trial states cannot be known precisely. This scenario inevitably leads to SPAM errors degrading reconstruction performance. Here we develop a framework based on machine learning which generally applies to both the tomography and SPAM mitigation problem. We experimentally implement our method. We trained a supervised neural network to filter the experimental data and hence uncovered salient patterns that characterize the measurement probabilities for the original state and the ideal experimental apparatus free from SPAM errors. We compared the neural network state reconstruction protocol with a protocol treating SPAM errors by process tomography, as well as to an SPAM-agnostic protocol with idealized measurements. The average reconstruction fidelity is shown to be enhanced by 10% and 27%, respectively. The presented methods apply to the vast range of quantum experiments which rely on tomography.</description><subject>639/624/400/3925</subject><subject>639/766/483/481</subject><subject>Classical and Quantum Gravitation</subject><subject>Information processing</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Computing</subject><subject>Quantum Field Theories</subject><subject>Quantum Information Technology</subject><subject>Quantum Physics</subject><subject>Relativity Theory</subject><subject>Spintronics</subject><subject>String Theory</subject><subject>Tomography</subject><issn>2056-6387</issn><issn>2056-6387</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kEtPwzAQhC0EElXpD-AWiXNg_XaOqCoPqRIXOFt27LSU1kntRNB_j0uQ4AKH1ezhm13NIHSJ4RoDVTeJYU5ZCQTyMFWKEzQhwEUpqJKnv_ZzNEtpAwC4IoowPEFy8dH5-LrzoTfbIvghfkn_3sa3woe1CbV3xX4woR92Rd_u2lU03fpwgc4as01-9q1T9HK3eJ4_lMun-8f57bKsGad9KUA5MJUzzlbCKm-hbiyzloKT4Bn1WHIJlFSSOUwNZ546wRyV3BGrnKFTdDXe7WK7H3zq9aYdYsgvdU6qpKSYV_9SlBNKcA6fKTxSdWxTir7RXU5u4kFj0Mci9VikzkXqY5FaZA8ZPSmzYeXjz-W_TZ8NjnSU</recordid><startdate>20200207</startdate><enddate>20200207</enddate><creator>Palmieri, Adriano Macarone</creator><creator>Kovlakov, Egor</creator><creator>Bianchi, Federico</creator><creator>Yudin, Dmitry</creator><creator>Straupe, Stanislav</creator><creator>Biamonte, Jacob D.</creator><creator>Kulik, Sergei</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0001-9810-1958</orcidid><orcidid>https://orcid.org/0000-0002-0590-3327</orcidid></search><sort><creationdate>20200207</creationdate><title>Experimental neural network enhanced quantum tomography</title><author>Palmieri, Adriano Macarone ; Kovlakov, Egor ; Bianchi, Federico ; Yudin, Dmitry ; Straupe, Stanislav ; Biamonte, Jacob D. ; Kulik, Sergei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c453t-608d0a9dadb96b8eb0cfb4bb30d70e43e1757032974d13a54e3d64d375d2b8da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>639/624/400/3925</topic><topic>639/766/483/481</topic><topic>Classical and Quantum Gravitation</topic><topic>Information processing</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Computing</topic><topic>Quantum Field Theories</topic><topic>Quantum Information Technology</topic><topic>Quantum Physics</topic><topic>Relativity Theory</topic><topic>Spintronics</topic><topic>String Theory</topic><topic>Tomography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Palmieri, Adriano Macarone</creatorcontrib><creatorcontrib>Kovlakov, Egor</creatorcontrib><creatorcontrib>Bianchi, Federico</creatorcontrib><creatorcontrib>Yudin, Dmitry</creatorcontrib><creatorcontrib>Straupe, Stanislav</creatorcontrib><creatorcontrib>Biamonte, Jacob D.</creatorcontrib><creatorcontrib>Kulik, Sergei</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>npj quantum information</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Palmieri, Adriano Macarone</au><au>Kovlakov, Egor</au><au>Bianchi, Federico</au><au>Yudin, Dmitry</au><au>Straupe, Stanislav</au><au>Biamonte, Jacob D.</au><au>Kulik, Sergei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental neural network enhanced quantum tomography</atitle><jtitle>npj quantum information</jtitle><stitle>npj Quantum Inf</stitle><date>2020-02-07</date><risdate>2020</risdate><volume>6</volume><issue>1</issue><artnum>20</artnum><issn>2056-6387</issn><eissn>2056-6387</eissn><abstract>Quantum tomography is currently ubiquitous for testing any implementation of a quantum information processing device. Various sophisticated procedures for state and process reconstruction from measured data are well developed and benefit from precise knowledge of the model describing state-preparation-and-measurement (SPAM) apparatus. However, physical models suffer from intrinsic limitations as actual measurement operators and trial states cannot be known precisely. This scenario inevitably leads to SPAM errors degrading reconstruction performance. Here we develop a framework based on machine learning which generally applies to both the tomography and SPAM mitigation problem. We experimentally implement our method. We trained a supervised neural network to filter the experimental data and hence uncovered salient patterns that characterize the measurement probabilities for the original state and the ideal experimental apparatus free from SPAM errors. We compared the neural network state reconstruction protocol with a protocol treating SPAM errors by process tomography, as well as to an SPAM-agnostic protocol with idealized measurements. The average reconstruction fidelity is shown to be enhanced by 10% and 27%, respectively. The presented methods apply to the vast range of quantum experiments which rely on tomography.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41534-020-0248-6</doi><orcidid>https://orcid.org/0000-0001-9810-1958</orcidid><orcidid>https://orcid.org/0000-0002-0590-3327</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2056-6387 |
ispartof | npj quantum information, 2020-02, Vol.6 (1), Article 20 |
issn | 2056-6387 2056-6387 |
language | eng |
recordid | cdi_proquest_journals_2488773159 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Springer Nature OA Free Journals; Nature Free |
subjects | 639/624/400/3925 639/766/483/481 Classical and Quantum Gravitation Information processing Learning algorithms Machine learning Neural networks Physics Physics and Astronomy Quantum Computing Quantum Field Theories Quantum Information Technology Quantum Physics Relativity Theory Spintronics String Theory Tomography |
title | Experimental neural network enhanced quantum tomography |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T00%3A48%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20neural%20network%20enhanced%20quantum%20tomography&rft.jtitle=npj%20quantum%20information&rft.au=Palmieri,%20Adriano%20Macarone&rft.date=2020-02-07&rft.volume=6&rft.issue=1&rft.artnum=20&rft.issn=2056-6387&rft.eissn=2056-6387&rft_id=info:doi/10.1038/s41534-020-0248-6&rft_dat=%3Cproquest_cross%3E2488773159%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2352321387&rft_id=info:pmid/&rfr_iscdi=true |