Experimental neural network enhanced quantum tomography

Quantum tomography is currently ubiquitous for testing any implementation of a quantum information processing device. Various sophisticated procedures for state and process reconstruction from measured data are well developed and benefit from precise knowledge of the model describing state-preparati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:npj quantum information 2020-02, Vol.6 (1), Article 20
Hauptverfasser: Palmieri, Adriano Macarone, Kovlakov, Egor, Bianchi, Federico, Yudin, Dmitry, Straupe, Stanislav, Biamonte, Jacob D., Kulik, Sergei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title npj quantum information
container_volume 6
creator Palmieri, Adriano Macarone
Kovlakov, Egor
Bianchi, Federico
Yudin, Dmitry
Straupe, Stanislav
Biamonte, Jacob D.
Kulik, Sergei
description Quantum tomography is currently ubiquitous for testing any implementation of a quantum information processing device. Various sophisticated procedures for state and process reconstruction from measured data are well developed and benefit from precise knowledge of the model describing state-preparation-and-measurement (SPAM) apparatus. However, physical models suffer from intrinsic limitations as actual measurement operators and trial states cannot be known precisely. This scenario inevitably leads to SPAM errors degrading reconstruction performance. Here we develop a framework based on machine learning which generally applies to both the tomography and SPAM mitigation problem. We experimentally implement our method. We trained a supervised neural network to filter the experimental data and hence uncovered salient patterns that characterize the measurement probabilities for the original state and the ideal experimental apparatus free from SPAM errors. We compared the neural network state reconstruction protocol with a protocol treating SPAM errors by process tomography, as well as to an SPAM-agnostic protocol with idealized measurements. The average reconstruction fidelity is shown to be enhanced by 10% and 27%, respectively. The presented methods apply to the vast range of quantum experiments which rely on tomography.
doi_str_mv 10.1038/s41534-020-0248-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2488773159</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2488773159</sourcerecordid><originalsourceid>FETCH-LOGICAL-c453t-608d0a9dadb96b8eb0cfb4bb30d70e43e1757032974d13a54e3d64d375d2b8da3</originalsourceid><addsrcrecordid>eNp9kEtPwzAQhC0EElXpD-AWiXNg_XaOqCoPqRIXOFt27LSU1kntRNB_j0uQ4AKH1ezhm13NIHSJ4RoDVTeJYU5ZCQTyMFWKEzQhwEUpqJKnv_ZzNEtpAwC4IoowPEFy8dH5-LrzoTfbIvghfkn_3sa3woe1CbV3xX4woR92Rd_u2lU03fpwgc4as01-9q1T9HK3eJ4_lMun-8f57bKsGad9KUA5MJUzzlbCKm-hbiyzloKT4Bn1WHIJlFSSOUwNZ546wRyV3BGrnKFTdDXe7WK7H3zq9aYdYsgvdU6qpKSYV_9SlBNKcA6fKTxSdWxTir7RXU5u4kFj0Mci9VikzkXqY5FaZA8ZPSmzYeXjz-W_TZ8NjnSU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2352321387</pqid></control><display><type>article</type><title>Experimental neural network enhanced quantum tomography</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><creator>Palmieri, Adriano Macarone ; Kovlakov, Egor ; Bianchi, Federico ; Yudin, Dmitry ; Straupe, Stanislav ; Biamonte, Jacob D. ; Kulik, Sergei</creator><creatorcontrib>Palmieri, Adriano Macarone ; Kovlakov, Egor ; Bianchi, Federico ; Yudin, Dmitry ; Straupe, Stanislav ; Biamonte, Jacob D. ; Kulik, Sergei</creatorcontrib><description>Quantum tomography is currently ubiquitous for testing any implementation of a quantum information processing device. Various sophisticated procedures for state and process reconstruction from measured data are well developed and benefit from precise knowledge of the model describing state-preparation-and-measurement (SPAM) apparatus. However, physical models suffer from intrinsic limitations as actual measurement operators and trial states cannot be known precisely. This scenario inevitably leads to SPAM errors degrading reconstruction performance. Here we develop a framework based on machine learning which generally applies to both the tomography and SPAM mitigation problem. We experimentally implement our method. We trained a supervised neural network to filter the experimental data and hence uncovered salient patterns that characterize the measurement probabilities for the original state and the ideal experimental apparatus free from SPAM errors. We compared the neural network state reconstruction protocol with a protocol treating SPAM errors by process tomography, as well as to an SPAM-agnostic protocol with idealized measurements. The average reconstruction fidelity is shown to be enhanced by 10% and 27%, respectively. The presented methods apply to the vast range of quantum experiments which rely on tomography.</description><identifier>ISSN: 2056-6387</identifier><identifier>EISSN: 2056-6387</identifier><identifier>DOI: 10.1038/s41534-020-0248-6</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/624/400/3925 ; 639/766/483/481 ; Classical and Quantum Gravitation ; Information processing ; Learning algorithms ; Machine learning ; Neural networks ; Physics ; Physics and Astronomy ; Quantum Computing ; Quantum Field Theories ; Quantum Information Technology ; Quantum Physics ; Relativity Theory ; Spintronics ; String Theory ; Tomography</subject><ispartof>npj quantum information, 2020-02, Vol.6 (1), Article 20</ispartof><rights>The Author(s) 2020</rights><rights>This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c453t-608d0a9dadb96b8eb0cfb4bb30d70e43e1757032974d13a54e3d64d375d2b8da3</citedby><cites>FETCH-LOGICAL-c453t-608d0a9dadb96b8eb0cfb4bb30d70e43e1757032974d13a54e3d64d375d2b8da3</cites><orcidid>0000-0001-9810-1958 ; 0000-0002-0590-3327</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41534-020-0248-6$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://doi.org/10.1038/s41534-020-0248-6$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,27924,27925,41120,42189,51576</link.rule.ids></links><search><creatorcontrib>Palmieri, Adriano Macarone</creatorcontrib><creatorcontrib>Kovlakov, Egor</creatorcontrib><creatorcontrib>Bianchi, Federico</creatorcontrib><creatorcontrib>Yudin, Dmitry</creatorcontrib><creatorcontrib>Straupe, Stanislav</creatorcontrib><creatorcontrib>Biamonte, Jacob D.</creatorcontrib><creatorcontrib>Kulik, Sergei</creatorcontrib><title>Experimental neural network enhanced quantum tomography</title><title>npj quantum information</title><addtitle>npj Quantum Inf</addtitle><description>Quantum tomography is currently ubiquitous for testing any implementation of a quantum information processing device. Various sophisticated procedures for state and process reconstruction from measured data are well developed and benefit from precise knowledge of the model describing state-preparation-and-measurement (SPAM) apparatus. However, physical models suffer from intrinsic limitations as actual measurement operators and trial states cannot be known precisely. This scenario inevitably leads to SPAM errors degrading reconstruction performance. Here we develop a framework based on machine learning which generally applies to both the tomography and SPAM mitigation problem. We experimentally implement our method. We trained a supervised neural network to filter the experimental data and hence uncovered salient patterns that characterize the measurement probabilities for the original state and the ideal experimental apparatus free from SPAM errors. We compared the neural network state reconstruction protocol with a protocol treating SPAM errors by process tomography, as well as to an SPAM-agnostic protocol with idealized measurements. The average reconstruction fidelity is shown to be enhanced by 10% and 27%, respectively. The presented methods apply to the vast range of quantum experiments which rely on tomography.</description><subject>639/624/400/3925</subject><subject>639/766/483/481</subject><subject>Classical and Quantum Gravitation</subject><subject>Information processing</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Computing</subject><subject>Quantum Field Theories</subject><subject>Quantum Information Technology</subject><subject>Quantum Physics</subject><subject>Relativity Theory</subject><subject>Spintronics</subject><subject>String Theory</subject><subject>Tomography</subject><issn>2056-6387</issn><issn>2056-6387</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kEtPwzAQhC0EElXpD-AWiXNg_XaOqCoPqRIXOFt27LSU1kntRNB_j0uQ4AKH1ezhm13NIHSJ4RoDVTeJYU5ZCQTyMFWKEzQhwEUpqJKnv_ZzNEtpAwC4IoowPEFy8dH5-LrzoTfbIvghfkn_3sa3woe1CbV3xX4woR92Rd_u2lU03fpwgc4as01-9q1T9HK3eJ4_lMun-8f57bKsGad9KUA5MJUzzlbCKm-hbiyzloKT4Bn1WHIJlFSSOUwNZ546wRyV3BGrnKFTdDXe7WK7H3zq9aYdYsgvdU6qpKSYV_9SlBNKcA6fKTxSdWxTir7RXU5u4kFj0Mci9VikzkXqY5FaZA8ZPSmzYeXjz-W_TZ8NjnSU</recordid><startdate>20200207</startdate><enddate>20200207</enddate><creator>Palmieri, Adriano Macarone</creator><creator>Kovlakov, Egor</creator><creator>Bianchi, Federico</creator><creator>Yudin, Dmitry</creator><creator>Straupe, Stanislav</creator><creator>Biamonte, Jacob D.</creator><creator>Kulik, Sergei</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0001-9810-1958</orcidid><orcidid>https://orcid.org/0000-0002-0590-3327</orcidid></search><sort><creationdate>20200207</creationdate><title>Experimental neural network enhanced quantum tomography</title><author>Palmieri, Adriano Macarone ; Kovlakov, Egor ; Bianchi, Federico ; Yudin, Dmitry ; Straupe, Stanislav ; Biamonte, Jacob D. ; Kulik, Sergei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c453t-608d0a9dadb96b8eb0cfb4bb30d70e43e1757032974d13a54e3d64d375d2b8da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>639/624/400/3925</topic><topic>639/766/483/481</topic><topic>Classical and Quantum Gravitation</topic><topic>Information processing</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Computing</topic><topic>Quantum Field Theories</topic><topic>Quantum Information Technology</topic><topic>Quantum Physics</topic><topic>Relativity Theory</topic><topic>Spintronics</topic><topic>String Theory</topic><topic>Tomography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Palmieri, Adriano Macarone</creatorcontrib><creatorcontrib>Kovlakov, Egor</creatorcontrib><creatorcontrib>Bianchi, Federico</creatorcontrib><creatorcontrib>Yudin, Dmitry</creatorcontrib><creatorcontrib>Straupe, Stanislav</creatorcontrib><creatorcontrib>Biamonte, Jacob D.</creatorcontrib><creatorcontrib>Kulik, Sergei</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>npj quantum information</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Palmieri, Adriano Macarone</au><au>Kovlakov, Egor</au><au>Bianchi, Federico</au><au>Yudin, Dmitry</au><au>Straupe, Stanislav</au><au>Biamonte, Jacob D.</au><au>Kulik, Sergei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental neural network enhanced quantum tomography</atitle><jtitle>npj quantum information</jtitle><stitle>npj Quantum Inf</stitle><date>2020-02-07</date><risdate>2020</risdate><volume>6</volume><issue>1</issue><artnum>20</artnum><issn>2056-6387</issn><eissn>2056-6387</eissn><abstract>Quantum tomography is currently ubiquitous for testing any implementation of a quantum information processing device. Various sophisticated procedures for state and process reconstruction from measured data are well developed and benefit from precise knowledge of the model describing state-preparation-and-measurement (SPAM) apparatus. However, physical models suffer from intrinsic limitations as actual measurement operators and trial states cannot be known precisely. This scenario inevitably leads to SPAM errors degrading reconstruction performance. Here we develop a framework based on machine learning which generally applies to both the tomography and SPAM mitigation problem. We experimentally implement our method. We trained a supervised neural network to filter the experimental data and hence uncovered salient patterns that characterize the measurement probabilities for the original state and the ideal experimental apparatus free from SPAM errors. We compared the neural network state reconstruction protocol with a protocol treating SPAM errors by process tomography, as well as to an SPAM-agnostic protocol with idealized measurements. The average reconstruction fidelity is shown to be enhanced by 10% and 27%, respectively. The presented methods apply to the vast range of quantum experiments which rely on tomography.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41534-020-0248-6</doi><orcidid>https://orcid.org/0000-0001-9810-1958</orcidid><orcidid>https://orcid.org/0000-0002-0590-3327</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2056-6387
ispartof npj quantum information, 2020-02, Vol.6 (1), Article 20
issn 2056-6387
2056-6387
language eng
recordid cdi_proquest_journals_2488773159
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Springer Nature OA Free Journals; Nature Free
subjects 639/624/400/3925
639/766/483/481
Classical and Quantum Gravitation
Information processing
Learning algorithms
Machine learning
Neural networks
Physics
Physics and Astronomy
Quantum Computing
Quantum Field Theories
Quantum Information Technology
Quantum Physics
Relativity Theory
Spintronics
String Theory
Tomography
title Experimental neural network enhanced quantum tomography
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T00%3A48%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20neural%20network%20enhanced%20quantum%20tomography&rft.jtitle=npj%20quantum%20information&rft.au=Palmieri,%20Adriano%20Macarone&rft.date=2020-02-07&rft.volume=6&rft.issue=1&rft.artnum=20&rft.issn=2056-6387&rft.eissn=2056-6387&rft_id=info:doi/10.1038/s41534-020-0248-6&rft_dat=%3Cproquest_cross%3E2488773159%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2352321387&rft_id=info:pmid/&rfr_iscdi=true