Ultrafast manipulation of the weakly bound helium dimer

Controlling the interactions between atoms with external fields opened up new branches in physics ranging from strongly correlated atomic systems to ideal Bose 1 and Fermi 2 gases and Efimov physics 3 , 4 . Such control usually prepares samples that are stationary or evolve adiabatically in time. In...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature physics 2021-02, Vol.17 (2), p.174-178
Hauptverfasser: Kunitski, Maksim, Guan, Qingze, Maschkiwitz, Holger, Hahnenbruch, Jörg, Eckart, Sebastian, Zeller, Stefan, Kalinin, Anton, Schöffler, Markus, Schmidt, Lothar Ph. H., Jahnke, Till, Blume, Dörte, Dörner, Reinhard
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 178
container_issue 2
container_start_page 174
container_title Nature physics
container_volume 17
creator Kunitski, Maksim
Guan, Qingze
Maschkiwitz, Holger
Hahnenbruch, Jörg
Eckart, Sebastian
Zeller, Stefan
Kalinin, Anton
Schöffler, Markus
Schmidt, Lothar Ph. H.
Jahnke, Till
Blume, Dörte
Dörner, Reinhard
description Controlling the interactions between atoms with external fields opened up new branches in physics ranging from strongly correlated atomic systems to ideal Bose 1 and Fermi 2 gases and Efimov physics 3 , 4 . Such control usually prepares samples that are stationary or evolve adiabatically in time. In contrast, in molecular physics, external ultrashort laser fields are used to create anisotropic potentials that launch ultrafast rotational wave packets and align molecules in free space 5 . Here we combine these two regimes of ultrafast times and low energies. We apply a short laser pulse to the helium dimer, a weakly bound and highly delocalized single bound state quantum system. The laser field locally tunes the interaction between two helium atoms, imparting an angular momentum of 2ℏ and evoking an initially confined dissociative wave packet. We record a video of the density and phase of this wave packet as it propagates from small to large internuclear distances. At large internuclear distances, where the interaction between atoms is negligible, the wave packet is essentially free. This work paves the way for future tomography of wave-packet dynamics and provides the technique for studying exotic and otherwise hardly accessible quantum systems, such as halo and Efimov states. Ultrashort laser fields applied to a helium dimer are able to tune the interactions between two helium atoms. A video of the dimer’s response to this localized disturbance shows the effect of dissociation and alignment of the wave packets.
doi_str_mv 10.1038/s41567-020-01081-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2488772602</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2488772602</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-2c0de34d0ad30c4f48ba69ccb0b76d7cae91854a42c925ac4b3d36abbf12adf3</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwA6wssTaMH4mTJap4SZXYlLU1foSm5FHsRKh_TyAIdqxmFvfc0RxCLjlcc5DFTVI8yzUDAQw4FJzJI7LgWmVMqIIf_-5anpKzlHYASuRcLoh-aYaIFaaBttjV-7HBoe472ld02Ab6EfCtOVDbj52n29DUY0t93YZ4Tk4qbFK4-JlLsrm_26we2fr54Wl1u2ZO8nJgwoEPUnlAL8GpShUW89I5C1bnXjsMJS8yhUq4UmTolJVe5mhtxQX6Si7J1Vy7j_37GNJgdv0Yu-mimR4rtBY5iCkl5pSLfUoxVGYf6xbjwXAwX37M7MdMfsy3HyMnSM5QmsLda4h_1f9Qn_xvaMA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2488772602</pqid></control><display><type>article</type><title>Ultrafast manipulation of the weakly bound helium dimer</title><source>SpringerLink Journals</source><source>Nature</source><creator>Kunitski, Maksim ; Guan, Qingze ; Maschkiwitz, Holger ; Hahnenbruch, Jörg ; Eckart, Sebastian ; Zeller, Stefan ; Kalinin, Anton ; Schöffler, Markus ; Schmidt, Lothar Ph. H. ; Jahnke, Till ; Blume, Dörte ; Dörner, Reinhard</creator><creatorcontrib>Kunitski, Maksim ; Guan, Qingze ; Maschkiwitz, Holger ; Hahnenbruch, Jörg ; Eckart, Sebastian ; Zeller, Stefan ; Kalinin, Anton ; Schöffler, Markus ; Schmidt, Lothar Ph. H. ; Jahnke, Till ; Blume, Dörte ; Dörner, Reinhard</creatorcontrib><description>Controlling the interactions between atoms with external fields opened up new branches in physics ranging from strongly correlated atomic systems to ideal Bose 1 and Fermi 2 gases and Efimov physics 3 , 4 . Such control usually prepares samples that are stationary or evolve adiabatically in time. In contrast, in molecular physics, external ultrashort laser fields are used to create anisotropic potentials that launch ultrafast rotational wave packets and align molecules in free space 5 . Here we combine these two regimes of ultrafast times and low energies. We apply a short laser pulse to the helium dimer, a weakly bound and highly delocalized single bound state quantum system. The laser field locally tunes the interaction between two helium atoms, imparting an angular momentum of 2ℏ and evoking an initially confined dissociative wave packet. We record a video of the density and phase of this wave packet as it propagates from small to large internuclear distances. At large internuclear distances, where the interaction between atoms is negligible, the wave packet is essentially free. This work paves the way for future tomography of wave-packet dynamics and provides the technique for studying exotic and otherwise hardly accessible quantum systems, such as halo and Efimov states. Ultrashort laser fields applied to a helium dimer are able to tune the interactions between two helium atoms. A video of the dimer’s response to this localized disturbance shows the effect of dissociation and alignment of the wave packets.</description><identifier>ISSN: 1745-2473</identifier><identifier>EISSN: 1745-2481</identifier><identifier>DOI: 10.1038/s41567-020-01081-3</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>140/125 ; 639/766/36/1123 ; 639/766/36/1124 ; Angular momentum ; Atomic ; Classical and Continuum Physics ; Complex Systems ; Condensed Matter Physics ; Dimers ; Helium ; Helium atoms ; Lasers ; Letter ; Mathematical and Computational Physics ; Molecular ; Molecular physics ; Optical and Plasma Physics ; Physics ; Physics and Astronomy ; Quantum theory ; Theoretical ; Wave packets</subject><ispartof>Nature physics, 2021-02, Vol.17 (2), p.174-178</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-2c0de34d0ad30c4f48ba69ccb0b76d7cae91854a42c925ac4b3d36abbf12adf3</citedby><cites>FETCH-LOGICAL-c319t-2c0de34d0ad30c4f48ba69ccb0b76d7cae91854a42c925ac4b3d36abbf12adf3</cites><orcidid>0000-0002-9245-9059 ; 0000-0001-6543-8722 ; 0000-0001-7710-1799 ; 0000-0002-3728-4268</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41567-020-01081-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41567-020-01081-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Kunitski, Maksim</creatorcontrib><creatorcontrib>Guan, Qingze</creatorcontrib><creatorcontrib>Maschkiwitz, Holger</creatorcontrib><creatorcontrib>Hahnenbruch, Jörg</creatorcontrib><creatorcontrib>Eckart, Sebastian</creatorcontrib><creatorcontrib>Zeller, Stefan</creatorcontrib><creatorcontrib>Kalinin, Anton</creatorcontrib><creatorcontrib>Schöffler, Markus</creatorcontrib><creatorcontrib>Schmidt, Lothar Ph. H.</creatorcontrib><creatorcontrib>Jahnke, Till</creatorcontrib><creatorcontrib>Blume, Dörte</creatorcontrib><creatorcontrib>Dörner, Reinhard</creatorcontrib><title>Ultrafast manipulation of the weakly bound helium dimer</title><title>Nature physics</title><addtitle>Nat. Phys</addtitle><description>Controlling the interactions between atoms with external fields opened up new branches in physics ranging from strongly correlated atomic systems to ideal Bose 1 and Fermi 2 gases and Efimov physics 3 , 4 . Such control usually prepares samples that are stationary or evolve adiabatically in time. In contrast, in molecular physics, external ultrashort laser fields are used to create anisotropic potentials that launch ultrafast rotational wave packets and align molecules in free space 5 . Here we combine these two regimes of ultrafast times and low energies. We apply a short laser pulse to the helium dimer, a weakly bound and highly delocalized single bound state quantum system. The laser field locally tunes the interaction between two helium atoms, imparting an angular momentum of 2ℏ and evoking an initially confined dissociative wave packet. We record a video of the density and phase of this wave packet as it propagates from small to large internuclear distances. At large internuclear distances, where the interaction between atoms is negligible, the wave packet is essentially free. This work paves the way for future tomography of wave-packet dynamics and provides the technique for studying exotic and otherwise hardly accessible quantum systems, such as halo and Efimov states. Ultrashort laser fields applied to a helium dimer are able to tune the interactions between two helium atoms. A video of the dimer’s response to this localized disturbance shows the effect of dissociation and alignment of the wave packets.</description><subject>140/125</subject><subject>639/766/36/1123</subject><subject>639/766/36/1124</subject><subject>Angular momentum</subject><subject>Atomic</subject><subject>Classical and Continuum Physics</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Dimers</subject><subject>Helium</subject><subject>Helium atoms</subject><subject>Lasers</subject><subject>Letter</subject><subject>Mathematical and Computational Physics</subject><subject>Molecular</subject><subject>Molecular physics</subject><subject>Optical and Plasma Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum theory</subject><subject>Theoretical</subject><subject>Wave packets</subject><issn>1745-2473</issn><issn>1745-2481</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kMtOwzAQRS0EEqXwA6wssTaMH4mTJap4SZXYlLU1foSm5FHsRKh_TyAIdqxmFvfc0RxCLjlcc5DFTVI8yzUDAQw4FJzJI7LgWmVMqIIf_-5anpKzlHYASuRcLoh-aYaIFaaBttjV-7HBoe472ld02Ab6EfCtOVDbj52n29DUY0t93YZ4Tk4qbFK4-JlLsrm_26we2fr54Wl1u2ZO8nJgwoEPUnlAL8GpShUW89I5C1bnXjsMJS8yhUq4UmTolJVe5mhtxQX6Si7J1Vy7j_37GNJgdv0Yu-mimR4rtBY5iCkl5pSLfUoxVGYf6xbjwXAwX37M7MdMfsy3HyMnSM5QmsLda4h_1f9Qn_xvaMA</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Kunitski, Maksim</creator><creator>Guan, Qingze</creator><creator>Maschkiwitz, Holger</creator><creator>Hahnenbruch, Jörg</creator><creator>Eckart, Sebastian</creator><creator>Zeller, Stefan</creator><creator>Kalinin, Anton</creator><creator>Schöffler, Markus</creator><creator>Schmidt, Lothar Ph. H.</creator><creator>Jahnke, Till</creator><creator>Blume, Dörte</creator><creator>Dörner, Reinhard</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-9245-9059</orcidid><orcidid>https://orcid.org/0000-0001-6543-8722</orcidid><orcidid>https://orcid.org/0000-0001-7710-1799</orcidid><orcidid>https://orcid.org/0000-0002-3728-4268</orcidid></search><sort><creationdate>20210201</creationdate><title>Ultrafast manipulation of the weakly bound helium dimer</title><author>Kunitski, Maksim ; Guan, Qingze ; Maschkiwitz, Holger ; Hahnenbruch, Jörg ; Eckart, Sebastian ; Zeller, Stefan ; Kalinin, Anton ; Schöffler, Markus ; Schmidt, Lothar Ph. H. ; Jahnke, Till ; Blume, Dörte ; Dörner, Reinhard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-2c0de34d0ad30c4f48ba69ccb0b76d7cae91854a42c925ac4b3d36abbf12adf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>140/125</topic><topic>639/766/36/1123</topic><topic>639/766/36/1124</topic><topic>Angular momentum</topic><topic>Atomic</topic><topic>Classical and Continuum Physics</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Dimers</topic><topic>Helium</topic><topic>Helium atoms</topic><topic>Lasers</topic><topic>Letter</topic><topic>Mathematical and Computational Physics</topic><topic>Molecular</topic><topic>Molecular physics</topic><topic>Optical and Plasma Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum theory</topic><topic>Theoretical</topic><topic>Wave packets</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kunitski, Maksim</creatorcontrib><creatorcontrib>Guan, Qingze</creatorcontrib><creatorcontrib>Maschkiwitz, Holger</creatorcontrib><creatorcontrib>Hahnenbruch, Jörg</creatorcontrib><creatorcontrib>Eckart, Sebastian</creatorcontrib><creatorcontrib>Zeller, Stefan</creatorcontrib><creatorcontrib>Kalinin, Anton</creatorcontrib><creatorcontrib>Schöffler, Markus</creatorcontrib><creatorcontrib>Schmidt, Lothar Ph. H.</creatorcontrib><creatorcontrib>Jahnke, Till</creatorcontrib><creatorcontrib>Blume, Dörte</creatorcontrib><creatorcontrib>Dörner, Reinhard</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Nature physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kunitski, Maksim</au><au>Guan, Qingze</au><au>Maschkiwitz, Holger</au><au>Hahnenbruch, Jörg</au><au>Eckart, Sebastian</au><au>Zeller, Stefan</au><au>Kalinin, Anton</au><au>Schöffler, Markus</au><au>Schmidt, Lothar Ph. H.</au><au>Jahnke, Till</au><au>Blume, Dörte</au><au>Dörner, Reinhard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultrafast manipulation of the weakly bound helium dimer</atitle><jtitle>Nature physics</jtitle><stitle>Nat. Phys</stitle><date>2021-02-01</date><risdate>2021</risdate><volume>17</volume><issue>2</issue><spage>174</spage><epage>178</epage><pages>174-178</pages><issn>1745-2473</issn><eissn>1745-2481</eissn><abstract>Controlling the interactions between atoms with external fields opened up new branches in physics ranging from strongly correlated atomic systems to ideal Bose 1 and Fermi 2 gases and Efimov physics 3 , 4 . Such control usually prepares samples that are stationary or evolve adiabatically in time. In contrast, in molecular physics, external ultrashort laser fields are used to create anisotropic potentials that launch ultrafast rotational wave packets and align molecules in free space 5 . Here we combine these two regimes of ultrafast times and low energies. We apply a short laser pulse to the helium dimer, a weakly bound and highly delocalized single bound state quantum system. The laser field locally tunes the interaction between two helium atoms, imparting an angular momentum of 2ℏ and evoking an initially confined dissociative wave packet. We record a video of the density and phase of this wave packet as it propagates from small to large internuclear distances. At large internuclear distances, where the interaction between atoms is negligible, the wave packet is essentially free. This work paves the way for future tomography of wave-packet dynamics and provides the technique for studying exotic and otherwise hardly accessible quantum systems, such as halo and Efimov states. Ultrashort laser fields applied to a helium dimer are able to tune the interactions between two helium atoms. A video of the dimer’s response to this localized disturbance shows the effect of dissociation and alignment of the wave packets.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41567-020-01081-3</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-9245-9059</orcidid><orcidid>https://orcid.org/0000-0001-6543-8722</orcidid><orcidid>https://orcid.org/0000-0001-7710-1799</orcidid><orcidid>https://orcid.org/0000-0002-3728-4268</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1745-2473
ispartof Nature physics, 2021-02, Vol.17 (2), p.174-178
issn 1745-2473
1745-2481
language eng
recordid cdi_proquest_journals_2488772602
source SpringerLink Journals; Nature
subjects 140/125
639/766/36/1123
639/766/36/1124
Angular momentum
Atomic
Classical and Continuum Physics
Complex Systems
Condensed Matter Physics
Dimers
Helium
Helium atoms
Lasers
Letter
Mathematical and Computational Physics
Molecular
Molecular physics
Optical and Plasma Physics
Physics
Physics and Astronomy
Quantum theory
Theoretical
Wave packets
title Ultrafast manipulation of the weakly bound helium dimer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T00%3A03%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultrafast%20manipulation%20of%20the%20weakly%20bound%20helium%20dimer&rft.jtitle=Nature%20physics&rft.au=Kunitski,%20Maksim&rft.date=2021-02-01&rft.volume=17&rft.issue=2&rft.spage=174&rft.epage=178&rft.pages=174-178&rft.issn=1745-2473&rft.eissn=1745-2481&rft_id=info:doi/10.1038/s41567-020-01081-3&rft_dat=%3Cproquest_cross%3E2488772602%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2488772602&rft_id=info:pmid/&rfr_iscdi=true