Observation of flat bands in twisted bilayer graphene
Transport experiments in twisted bilayer graphene have revealed multiple superconducting domes separated by correlated insulating states 1 – 5 . These properties are generally associated with strongly correlated states in a flat mini-band of the hexagonal moiré superlattice as was predicted by band...
Gespeichert in:
Veröffentlicht in: | Nature physics 2021-02, Vol.17 (2), p.189-193 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 193 |
---|---|
container_issue | 2 |
container_start_page | 189 |
container_title | Nature physics |
container_volume | 17 |
creator | Lisi, Simone Lu, Xiaobo Benschop, Tjerk de Jong, Tobias A. Stepanov, Petr Duran, Jose R. Margot, Florian Cucchi, Irène Cappelli, Edoardo Hunter, Andrew Tamai, Anna Kandyba, Viktor Giampietri, Alessio Barinov, Alexei Jobst, Johannes Stalman, Vincent Leeuwenhoek, Maarten Watanabe, Kenji Taniguchi, Takashi Rademaker, Louk van der Molen, Sense Jan Allan, Milan P. Efetov, Dmitri K. Baumberger, Felix |
description | Transport experiments in twisted bilayer graphene have revealed multiple superconducting domes separated by correlated insulating states
1
–
5
. These properties are generally associated with strongly correlated states in a flat mini-band of the hexagonal moiré superlattice as was predicted by band structure calculations
6
–
8
. Evidence for the existence of a flat band comes from local tunnelling spectroscopy
9
–
13
and electronic compressibility measurements
14
, which report two or more sharp peaks in the density of states that may be associated with closely spaced Van Hove singularities. However, direct momentum-resolved measurements have proved to be challenging
15
. Here, we combine different imaging techniques and angle-resolved photoemission with simultaneous real- and momentum-space resolution (nano-ARPES) to directly map the band dispersion in twisted bilayer graphene devices near charge neutrality. Our experiments reveal large areas with a homogeneous twist angle that support a flat band with a spectral weight that is highly localized in momentum space. The flat band is separated from the dispersive Dirac bands, which show multiple moiré hybridization gaps. These data establish the salient features of the twisted bilayer graphene band structure.
Spectroscopic measurements using nano-ARPES on twisted bilayer graphene directly highlight the presence of the flat bands. |
doi_str_mv | 10.1038/s41567-020-01041-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2488772427</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2488772427</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-bec969535ec621747dcb2748630abe991b908d6b659d4d7af289d51b4acccf8c3</originalsourceid><addsrcrecordid>eNp9kDtPAzEQhC0EEiHwB6gsURv8fpQoAoIUKQ3Ull8XLgp3wb5A8u8xHIKOareYmd35ALgk-Jpgpm8KJ0IqhClGmGBO0P4ITIjiAlGuyfHvrtgpOCtljTGnkrAJEEtfUn53Q9t3sG9gs3ED9K6LBbYdHD7aMqQIfbtxh5ThKrvtS-rSOThp3Kaki585Bc_3d0-zOVosHx5ntwsUmBYD8ikYaQQTKUhaP1AxeKq4lgw7n4wh3mAdpZfCRB6Va6g2URDPXQih0YFNwdWYu8392y6Vwa77Xe7qSVt7aaUop6qq6KgKuS8lp8Zuc_vq8sESbL_w2BGPrXjsNx67ryY2mkoVd6uU_6L_cX0C8sJoEA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2488772427</pqid></control><display><type>article</type><title>Observation of flat bands in twisted bilayer graphene</title><source>Springer Nature - Complete Springer Journals</source><source>Nature</source><creator>Lisi, Simone ; Lu, Xiaobo ; Benschop, Tjerk ; de Jong, Tobias A. ; Stepanov, Petr ; Duran, Jose R. ; Margot, Florian ; Cucchi, Irène ; Cappelli, Edoardo ; Hunter, Andrew ; Tamai, Anna ; Kandyba, Viktor ; Giampietri, Alessio ; Barinov, Alexei ; Jobst, Johannes ; Stalman, Vincent ; Leeuwenhoek, Maarten ; Watanabe, Kenji ; Taniguchi, Takashi ; Rademaker, Louk ; van der Molen, Sense Jan ; Allan, Milan P. ; Efetov, Dmitri K. ; Baumberger, Felix</creator><creatorcontrib>Lisi, Simone ; Lu, Xiaobo ; Benschop, Tjerk ; de Jong, Tobias A. ; Stepanov, Petr ; Duran, Jose R. ; Margot, Florian ; Cucchi, Irène ; Cappelli, Edoardo ; Hunter, Andrew ; Tamai, Anna ; Kandyba, Viktor ; Giampietri, Alessio ; Barinov, Alexei ; Jobst, Johannes ; Stalman, Vincent ; Leeuwenhoek, Maarten ; Watanabe, Kenji ; Taniguchi, Takashi ; Rademaker, Louk ; van der Molen, Sense Jan ; Allan, Milan P. ; Efetov, Dmitri K. ; Baumberger, Felix</creatorcontrib><description>Transport experiments in twisted bilayer graphene have revealed multiple superconducting domes separated by correlated insulating states
1
–
5
. These properties are generally associated with strongly correlated states in a flat mini-band of the hexagonal moiré superlattice as was predicted by band structure calculations
6
–
8
. Evidence for the existence of a flat band comes from local tunnelling spectroscopy
9
–
13
and electronic compressibility measurements
14
, which report two or more sharp peaks in the density of states that may be associated with closely spaced Van Hove singularities. However, direct momentum-resolved measurements have proved to be challenging
15
. Here, we combine different imaging techniques and angle-resolved photoemission with simultaneous real- and momentum-space resolution (nano-ARPES) to directly map the band dispersion in twisted bilayer graphene devices near charge neutrality. Our experiments reveal large areas with a homogeneous twist angle that support a flat band with a spectral weight that is highly localized in momentum space. The flat band is separated from the dispersive Dirac bands, which show multiple moiré hybridization gaps. These data establish the salient features of the twisted bilayer graphene band structure.
Spectroscopic measurements using nano-ARPES on twisted bilayer graphene directly highlight the presence of the flat bands.</description><identifier>ISSN: 1745-2473</identifier><identifier>EISSN: 1745-2481</identifier><identifier>DOI: 10.1038/s41567-020-01041-x</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/1005 ; 639/766/119/995 ; Atomic ; Band structure of solids ; Bilayers ; Classical and Continuum Physics ; Complex Systems ; Compressibility ; Condensed Matter Physics ; Dispersion ; Graphene ; Imaging techniques ; Letter ; Mathematical and Computational Physics ; Molecular ; Momentum ; Optical and Plasma Physics ; Photoelectric emission ; Physics ; Physics and Astronomy ; Superlattices ; Theoretical</subject><ispartof>Nature physics, 2021-02, Vol.17 (2), p.189-193</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-bec969535ec621747dcb2748630abe991b908d6b659d4d7af289d51b4acccf8c3</citedby><cites>FETCH-LOGICAL-c385t-bec969535ec621747dcb2748630abe991b908d6b659d4d7af289d51b4acccf8c3</cites><orcidid>0000-0001-5862-0462 ; 0000-0001-7104-7541 ; 0000-0003-3181-2055 ; 0000-0001-6053-8150 ; 0000-0002-0711-863X ; 0000-0002-1467-3105 ; 0000-0002-5211-8081 ; 0000-0002-5437-1945 ; 0000-0003-3149-4755 ; 0000-0003-4125-3779 ; 0000-0001-5239-6826 ; 0000-0002-1121-3146 ; 0000-0003-3701-8119 ; 0000-0002-2422-1209</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41567-020-01041-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41567-020-01041-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Lisi, Simone</creatorcontrib><creatorcontrib>Lu, Xiaobo</creatorcontrib><creatorcontrib>Benschop, Tjerk</creatorcontrib><creatorcontrib>de Jong, Tobias A.</creatorcontrib><creatorcontrib>Stepanov, Petr</creatorcontrib><creatorcontrib>Duran, Jose R.</creatorcontrib><creatorcontrib>Margot, Florian</creatorcontrib><creatorcontrib>Cucchi, Irène</creatorcontrib><creatorcontrib>Cappelli, Edoardo</creatorcontrib><creatorcontrib>Hunter, Andrew</creatorcontrib><creatorcontrib>Tamai, Anna</creatorcontrib><creatorcontrib>Kandyba, Viktor</creatorcontrib><creatorcontrib>Giampietri, Alessio</creatorcontrib><creatorcontrib>Barinov, Alexei</creatorcontrib><creatorcontrib>Jobst, Johannes</creatorcontrib><creatorcontrib>Stalman, Vincent</creatorcontrib><creatorcontrib>Leeuwenhoek, Maarten</creatorcontrib><creatorcontrib>Watanabe, Kenji</creatorcontrib><creatorcontrib>Taniguchi, Takashi</creatorcontrib><creatorcontrib>Rademaker, Louk</creatorcontrib><creatorcontrib>van der Molen, Sense Jan</creatorcontrib><creatorcontrib>Allan, Milan P.</creatorcontrib><creatorcontrib>Efetov, Dmitri K.</creatorcontrib><creatorcontrib>Baumberger, Felix</creatorcontrib><title>Observation of flat bands in twisted bilayer graphene</title><title>Nature physics</title><addtitle>Nat. Phys</addtitle><description>Transport experiments in twisted bilayer graphene have revealed multiple superconducting domes separated by correlated insulating states
1
–
5
. These properties are generally associated with strongly correlated states in a flat mini-band of the hexagonal moiré superlattice as was predicted by band structure calculations
6
–
8
. Evidence for the existence of a flat band comes from local tunnelling spectroscopy
9
–
13
and electronic compressibility measurements
14
, which report two or more sharp peaks in the density of states that may be associated with closely spaced Van Hove singularities. However, direct momentum-resolved measurements have proved to be challenging
15
. Here, we combine different imaging techniques and angle-resolved photoemission with simultaneous real- and momentum-space resolution (nano-ARPES) to directly map the band dispersion in twisted bilayer graphene devices near charge neutrality. Our experiments reveal large areas with a homogeneous twist angle that support a flat band with a spectral weight that is highly localized in momentum space. The flat band is separated from the dispersive Dirac bands, which show multiple moiré hybridization gaps. These data establish the salient features of the twisted bilayer graphene band structure.
Spectroscopic measurements using nano-ARPES on twisted bilayer graphene directly highlight the presence of the flat bands.</description><subject>639/301/1005</subject><subject>639/766/119/995</subject><subject>Atomic</subject><subject>Band structure of solids</subject><subject>Bilayers</subject><subject>Classical and Continuum Physics</subject><subject>Complex Systems</subject><subject>Compressibility</subject><subject>Condensed Matter Physics</subject><subject>Dispersion</subject><subject>Graphene</subject><subject>Imaging techniques</subject><subject>Letter</subject><subject>Mathematical and Computational Physics</subject><subject>Molecular</subject><subject>Momentum</subject><subject>Optical and Plasma Physics</subject><subject>Photoelectric emission</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Superlattices</subject><subject>Theoretical</subject><issn>1745-2473</issn><issn>1745-2481</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kDtPAzEQhC0EEiHwB6gsURv8fpQoAoIUKQ3Ull8XLgp3wb5A8u8xHIKOareYmd35ALgk-Jpgpm8KJ0IqhClGmGBO0P4ITIjiAlGuyfHvrtgpOCtljTGnkrAJEEtfUn53Q9t3sG9gs3ED9K6LBbYdHD7aMqQIfbtxh5ThKrvtS-rSOThp3Kaki585Bc_3d0-zOVosHx5ntwsUmBYD8ikYaQQTKUhaP1AxeKq4lgw7n4wh3mAdpZfCRB6Va6g2URDPXQih0YFNwdWYu8392y6Vwa77Xe7qSVt7aaUop6qq6KgKuS8lp8Zuc_vq8sESbL_w2BGPrXjsNx67ryY2mkoVd6uU_6L_cX0C8sJoEA</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Lisi, Simone</creator><creator>Lu, Xiaobo</creator><creator>Benschop, Tjerk</creator><creator>de Jong, Tobias A.</creator><creator>Stepanov, Petr</creator><creator>Duran, Jose R.</creator><creator>Margot, Florian</creator><creator>Cucchi, Irène</creator><creator>Cappelli, Edoardo</creator><creator>Hunter, Andrew</creator><creator>Tamai, Anna</creator><creator>Kandyba, Viktor</creator><creator>Giampietri, Alessio</creator><creator>Barinov, Alexei</creator><creator>Jobst, Johannes</creator><creator>Stalman, Vincent</creator><creator>Leeuwenhoek, Maarten</creator><creator>Watanabe, Kenji</creator><creator>Taniguchi, Takashi</creator><creator>Rademaker, Louk</creator><creator>van der Molen, Sense Jan</creator><creator>Allan, Milan P.</creator><creator>Efetov, Dmitri K.</creator><creator>Baumberger, Felix</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-5862-0462</orcidid><orcidid>https://orcid.org/0000-0001-7104-7541</orcidid><orcidid>https://orcid.org/0000-0003-3181-2055</orcidid><orcidid>https://orcid.org/0000-0001-6053-8150</orcidid><orcidid>https://orcid.org/0000-0002-0711-863X</orcidid><orcidid>https://orcid.org/0000-0002-1467-3105</orcidid><orcidid>https://orcid.org/0000-0002-5211-8081</orcidid><orcidid>https://orcid.org/0000-0002-5437-1945</orcidid><orcidid>https://orcid.org/0000-0003-3149-4755</orcidid><orcidid>https://orcid.org/0000-0003-4125-3779</orcidid><orcidid>https://orcid.org/0000-0001-5239-6826</orcidid><orcidid>https://orcid.org/0000-0002-1121-3146</orcidid><orcidid>https://orcid.org/0000-0003-3701-8119</orcidid><orcidid>https://orcid.org/0000-0002-2422-1209</orcidid></search><sort><creationdate>20210201</creationdate><title>Observation of flat bands in twisted bilayer graphene</title><author>Lisi, Simone ; Lu, Xiaobo ; Benschop, Tjerk ; de Jong, Tobias A. ; Stepanov, Petr ; Duran, Jose R. ; Margot, Florian ; Cucchi, Irène ; Cappelli, Edoardo ; Hunter, Andrew ; Tamai, Anna ; Kandyba, Viktor ; Giampietri, Alessio ; Barinov, Alexei ; Jobst, Johannes ; Stalman, Vincent ; Leeuwenhoek, Maarten ; Watanabe, Kenji ; Taniguchi, Takashi ; Rademaker, Louk ; van der Molen, Sense Jan ; Allan, Milan P. ; Efetov, Dmitri K. ; Baumberger, Felix</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-bec969535ec621747dcb2748630abe991b908d6b659d4d7af289d51b4acccf8c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>639/301/1005</topic><topic>639/766/119/995</topic><topic>Atomic</topic><topic>Band structure of solids</topic><topic>Bilayers</topic><topic>Classical and Continuum Physics</topic><topic>Complex Systems</topic><topic>Compressibility</topic><topic>Condensed Matter Physics</topic><topic>Dispersion</topic><topic>Graphene</topic><topic>Imaging techniques</topic><topic>Letter</topic><topic>Mathematical and Computational Physics</topic><topic>Molecular</topic><topic>Momentum</topic><topic>Optical and Plasma Physics</topic><topic>Photoelectric emission</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Superlattices</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lisi, Simone</creatorcontrib><creatorcontrib>Lu, Xiaobo</creatorcontrib><creatorcontrib>Benschop, Tjerk</creatorcontrib><creatorcontrib>de Jong, Tobias A.</creatorcontrib><creatorcontrib>Stepanov, Petr</creatorcontrib><creatorcontrib>Duran, Jose R.</creatorcontrib><creatorcontrib>Margot, Florian</creatorcontrib><creatorcontrib>Cucchi, Irène</creatorcontrib><creatorcontrib>Cappelli, Edoardo</creatorcontrib><creatorcontrib>Hunter, Andrew</creatorcontrib><creatorcontrib>Tamai, Anna</creatorcontrib><creatorcontrib>Kandyba, Viktor</creatorcontrib><creatorcontrib>Giampietri, Alessio</creatorcontrib><creatorcontrib>Barinov, Alexei</creatorcontrib><creatorcontrib>Jobst, Johannes</creatorcontrib><creatorcontrib>Stalman, Vincent</creatorcontrib><creatorcontrib>Leeuwenhoek, Maarten</creatorcontrib><creatorcontrib>Watanabe, Kenji</creatorcontrib><creatorcontrib>Taniguchi, Takashi</creatorcontrib><creatorcontrib>Rademaker, Louk</creatorcontrib><creatorcontrib>van der Molen, Sense Jan</creatorcontrib><creatorcontrib>Allan, Milan P.</creatorcontrib><creatorcontrib>Efetov, Dmitri K.</creatorcontrib><creatorcontrib>Baumberger, Felix</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Nature physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lisi, Simone</au><au>Lu, Xiaobo</au><au>Benschop, Tjerk</au><au>de Jong, Tobias A.</au><au>Stepanov, Petr</au><au>Duran, Jose R.</au><au>Margot, Florian</au><au>Cucchi, Irène</au><au>Cappelli, Edoardo</au><au>Hunter, Andrew</au><au>Tamai, Anna</au><au>Kandyba, Viktor</au><au>Giampietri, Alessio</au><au>Barinov, Alexei</au><au>Jobst, Johannes</au><au>Stalman, Vincent</au><au>Leeuwenhoek, Maarten</au><au>Watanabe, Kenji</au><au>Taniguchi, Takashi</au><au>Rademaker, Louk</au><au>van der Molen, Sense Jan</au><au>Allan, Milan P.</au><au>Efetov, Dmitri K.</au><au>Baumberger, Felix</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Observation of flat bands in twisted bilayer graphene</atitle><jtitle>Nature physics</jtitle><stitle>Nat. Phys</stitle><date>2021-02-01</date><risdate>2021</risdate><volume>17</volume><issue>2</issue><spage>189</spage><epage>193</epage><pages>189-193</pages><issn>1745-2473</issn><eissn>1745-2481</eissn><abstract>Transport experiments in twisted bilayer graphene have revealed multiple superconducting domes separated by correlated insulating states
1
–
5
. These properties are generally associated with strongly correlated states in a flat mini-band of the hexagonal moiré superlattice as was predicted by band structure calculations
6
–
8
. Evidence for the existence of a flat band comes from local tunnelling spectroscopy
9
–
13
and electronic compressibility measurements
14
, which report two or more sharp peaks in the density of states that may be associated with closely spaced Van Hove singularities. However, direct momentum-resolved measurements have proved to be challenging
15
. Here, we combine different imaging techniques and angle-resolved photoemission with simultaneous real- and momentum-space resolution (nano-ARPES) to directly map the band dispersion in twisted bilayer graphene devices near charge neutrality. Our experiments reveal large areas with a homogeneous twist angle that support a flat band with a spectral weight that is highly localized in momentum space. The flat band is separated from the dispersive Dirac bands, which show multiple moiré hybridization gaps. These data establish the salient features of the twisted bilayer graphene band structure.
Spectroscopic measurements using nano-ARPES on twisted bilayer graphene directly highlight the presence of the flat bands.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41567-020-01041-x</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-5862-0462</orcidid><orcidid>https://orcid.org/0000-0001-7104-7541</orcidid><orcidid>https://orcid.org/0000-0003-3181-2055</orcidid><orcidid>https://orcid.org/0000-0001-6053-8150</orcidid><orcidid>https://orcid.org/0000-0002-0711-863X</orcidid><orcidid>https://orcid.org/0000-0002-1467-3105</orcidid><orcidid>https://orcid.org/0000-0002-5211-8081</orcidid><orcidid>https://orcid.org/0000-0002-5437-1945</orcidid><orcidid>https://orcid.org/0000-0003-3149-4755</orcidid><orcidid>https://orcid.org/0000-0003-4125-3779</orcidid><orcidid>https://orcid.org/0000-0001-5239-6826</orcidid><orcidid>https://orcid.org/0000-0002-1121-3146</orcidid><orcidid>https://orcid.org/0000-0003-3701-8119</orcidid><orcidid>https://orcid.org/0000-0002-2422-1209</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1745-2473 |
ispartof | Nature physics, 2021-02, Vol.17 (2), p.189-193 |
issn | 1745-2473 1745-2481 |
language | eng |
recordid | cdi_proquest_journals_2488772427 |
source | Springer Nature - Complete Springer Journals; Nature |
subjects | 639/301/1005 639/766/119/995 Atomic Band structure of solids Bilayers Classical and Continuum Physics Complex Systems Compressibility Condensed Matter Physics Dispersion Graphene Imaging techniques Letter Mathematical and Computational Physics Molecular Momentum Optical and Plasma Physics Photoelectric emission Physics Physics and Astronomy Superlattices Theoretical |
title | Observation of flat bands in twisted bilayer graphene |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T05%3A53%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Observation%20of%20flat%20bands%20in%20twisted%20bilayer%20graphene&rft.jtitle=Nature%20physics&rft.au=Lisi,%20Simone&rft.date=2021-02-01&rft.volume=17&rft.issue=2&rft.spage=189&rft.epage=193&rft.pages=189-193&rft.issn=1745-2473&rft.eissn=1745-2481&rft_id=info:doi/10.1038/s41567-020-01041-x&rft_dat=%3Cproquest_cross%3E2488772427%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2488772427&rft_id=info:pmid/&rfr_iscdi=true |