Observation of flat bands in twisted bilayer graphene

Transport experiments in twisted bilayer graphene have revealed multiple superconducting domes separated by correlated insulating states 1 – 5 . These properties are generally associated with strongly correlated states in a flat mini-band of the hexagonal moiré superlattice as was predicted by band...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature physics 2021-02, Vol.17 (2), p.189-193
Hauptverfasser: Lisi, Simone, Lu, Xiaobo, Benschop, Tjerk, de Jong, Tobias A., Stepanov, Petr, Duran, Jose R., Margot, Florian, Cucchi, Irène, Cappelli, Edoardo, Hunter, Andrew, Tamai, Anna, Kandyba, Viktor, Giampietri, Alessio, Barinov, Alexei, Jobst, Johannes, Stalman, Vincent, Leeuwenhoek, Maarten, Watanabe, Kenji, Taniguchi, Takashi, Rademaker, Louk, van der Molen, Sense Jan, Allan, Milan P., Efetov, Dmitri K., Baumberger, Felix
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 193
container_issue 2
container_start_page 189
container_title Nature physics
container_volume 17
creator Lisi, Simone
Lu, Xiaobo
Benschop, Tjerk
de Jong, Tobias A.
Stepanov, Petr
Duran, Jose R.
Margot, Florian
Cucchi, Irène
Cappelli, Edoardo
Hunter, Andrew
Tamai, Anna
Kandyba, Viktor
Giampietri, Alessio
Barinov, Alexei
Jobst, Johannes
Stalman, Vincent
Leeuwenhoek, Maarten
Watanabe, Kenji
Taniguchi, Takashi
Rademaker, Louk
van der Molen, Sense Jan
Allan, Milan P.
Efetov, Dmitri K.
Baumberger, Felix
description Transport experiments in twisted bilayer graphene have revealed multiple superconducting domes separated by correlated insulating states 1 – 5 . These properties are generally associated with strongly correlated states in a flat mini-band of the hexagonal moiré superlattice as was predicted by band structure calculations 6 – 8 . Evidence for the existence of a flat band comes from local tunnelling spectroscopy 9 – 13 and electronic compressibility measurements 14 , which report two or more sharp peaks in the density of states that may be associated with closely spaced Van Hove singularities. However, direct momentum-resolved measurements have proved to be challenging 15 . Here, we combine different imaging techniques and angle-resolved photoemission with simultaneous real- and momentum-space resolution (nano-ARPES) to directly map the band dispersion in twisted bilayer graphene devices near charge neutrality. Our experiments reveal large areas with a homogeneous twist angle that support a flat band with a spectral weight that is highly localized in momentum space. The flat band is separated from the dispersive Dirac bands, which show multiple moiré hybridization gaps. These data establish the salient features of the twisted bilayer graphene band structure. Spectroscopic measurements using nano-ARPES on twisted bilayer graphene directly highlight the presence of the flat bands.
doi_str_mv 10.1038/s41567-020-01041-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2488772427</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2488772427</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-bec969535ec621747dcb2748630abe991b908d6b659d4d7af289d51b4acccf8c3</originalsourceid><addsrcrecordid>eNp9kDtPAzEQhC0EEiHwB6gsURv8fpQoAoIUKQ3Ull8XLgp3wb5A8u8xHIKOareYmd35ALgk-Jpgpm8KJ0IqhClGmGBO0P4ITIjiAlGuyfHvrtgpOCtljTGnkrAJEEtfUn53Q9t3sG9gs3ED9K6LBbYdHD7aMqQIfbtxh5ThKrvtS-rSOThp3Kaki585Bc_3d0-zOVosHx5ntwsUmBYD8ikYaQQTKUhaP1AxeKq4lgw7n4wh3mAdpZfCRB6Va6g2URDPXQih0YFNwdWYu8392y6Vwa77Xe7qSVt7aaUop6qq6KgKuS8lp8Zuc_vq8sESbL_w2BGPrXjsNx67ryY2mkoVd6uU_6L_cX0C8sJoEA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2488772427</pqid></control><display><type>article</type><title>Observation of flat bands in twisted bilayer graphene</title><source>Springer Nature - Complete Springer Journals</source><source>Nature</source><creator>Lisi, Simone ; Lu, Xiaobo ; Benschop, Tjerk ; de Jong, Tobias A. ; Stepanov, Petr ; Duran, Jose R. ; Margot, Florian ; Cucchi, Irène ; Cappelli, Edoardo ; Hunter, Andrew ; Tamai, Anna ; Kandyba, Viktor ; Giampietri, Alessio ; Barinov, Alexei ; Jobst, Johannes ; Stalman, Vincent ; Leeuwenhoek, Maarten ; Watanabe, Kenji ; Taniguchi, Takashi ; Rademaker, Louk ; van der Molen, Sense Jan ; Allan, Milan P. ; Efetov, Dmitri K. ; Baumberger, Felix</creator><creatorcontrib>Lisi, Simone ; Lu, Xiaobo ; Benschop, Tjerk ; de Jong, Tobias A. ; Stepanov, Petr ; Duran, Jose R. ; Margot, Florian ; Cucchi, Irène ; Cappelli, Edoardo ; Hunter, Andrew ; Tamai, Anna ; Kandyba, Viktor ; Giampietri, Alessio ; Barinov, Alexei ; Jobst, Johannes ; Stalman, Vincent ; Leeuwenhoek, Maarten ; Watanabe, Kenji ; Taniguchi, Takashi ; Rademaker, Louk ; van der Molen, Sense Jan ; Allan, Milan P. ; Efetov, Dmitri K. ; Baumberger, Felix</creatorcontrib><description>Transport experiments in twisted bilayer graphene have revealed multiple superconducting domes separated by correlated insulating states 1 – 5 . These properties are generally associated with strongly correlated states in a flat mini-band of the hexagonal moiré superlattice as was predicted by band structure calculations 6 – 8 . Evidence for the existence of a flat band comes from local tunnelling spectroscopy 9 – 13 and electronic compressibility measurements 14 , which report two or more sharp peaks in the density of states that may be associated with closely spaced Van Hove singularities. However, direct momentum-resolved measurements have proved to be challenging 15 . Here, we combine different imaging techniques and angle-resolved photoemission with simultaneous real- and momentum-space resolution (nano-ARPES) to directly map the band dispersion in twisted bilayer graphene devices near charge neutrality. Our experiments reveal large areas with a homogeneous twist angle that support a flat band with a spectral weight that is highly localized in momentum space. The flat band is separated from the dispersive Dirac bands, which show multiple moiré hybridization gaps. These data establish the salient features of the twisted bilayer graphene band structure. Spectroscopic measurements using nano-ARPES on twisted bilayer graphene directly highlight the presence of the flat bands.</description><identifier>ISSN: 1745-2473</identifier><identifier>EISSN: 1745-2481</identifier><identifier>DOI: 10.1038/s41567-020-01041-x</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/1005 ; 639/766/119/995 ; Atomic ; Band structure of solids ; Bilayers ; Classical and Continuum Physics ; Complex Systems ; Compressibility ; Condensed Matter Physics ; Dispersion ; Graphene ; Imaging techniques ; Letter ; Mathematical and Computational Physics ; Molecular ; Momentum ; Optical and Plasma Physics ; Photoelectric emission ; Physics ; Physics and Astronomy ; Superlattices ; Theoretical</subject><ispartof>Nature physics, 2021-02, Vol.17 (2), p.189-193</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-bec969535ec621747dcb2748630abe991b908d6b659d4d7af289d51b4acccf8c3</citedby><cites>FETCH-LOGICAL-c385t-bec969535ec621747dcb2748630abe991b908d6b659d4d7af289d51b4acccf8c3</cites><orcidid>0000-0001-5862-0462 ; 0000-0001-7104-7541 ; 0000-0003-3181-2055 ; 0000-0001-6053-8150 ; 0000-0002-0711-863X ; 0000-0002-1467-3105 ; 0000-0002-5211-8081 ; 0000-0002-5437-1945 ; 0000-0003-3149-4755 ; 0000-0003-4125-3779 ; 0000-0001-5239-6826 ; 0000-0002-1121-3146 ; 0000-0003-3701-8119 ; 0000-0002-2422-1209</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41567-020-01041-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41567-020-01041-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Lisi, Simone</creatorcontrib><creatorcontrib>Lu, Xiaobo</creatorcontrib><creatorcontrib>Benschop, Tjerk</creatorcontrib><creatorcontrib>de Jong, Tobias A.</creatorcontrib><creatorcontrib>Stepanov, Petr</creatorcontrib><creatorcontrib>Duran, Jose R.</creatorcontrib><creatorcontrib>Margot, Florian</creatorcontrib><creatorcontrib>Cucchi, Irène</creatorcontrib><creatorcontrib>Cappelli, Edoardo</creatorcontrib><creatorcontrib>Hunter, Andrew</creatorcontrib><creatorcontrib>Tamai, Anna</creatorcontrib><creatorcontrib>Kandyba, Viktor</creatorcontrib><creatorcontrib>Giampietri, Alessio</creatorcontrib><creatorcontrib>Barinov, Alexei</creatorcontrib><creatorcontrib>Jobst, Johannes</creatorcontrib><creatorcontrib>Stalman, Vincent</creatorcontrib><creatorcontrib>Leeuwenhoek, Maarten</creatorcontrib><creatorcontrib>Watanabe, Kenji</creatorcontrib><creatorcontrib>Taniguchi, Takashi</creatorcontrib><creatorcontrib>Rademaker, Louk</creatorcontrib><creatorcontrib>van der Molen, Sense Jan</creatorcontrib><creatorcontrib>Allan, Milan P.</creatorcontrib><creatorcontrib>Efetov, Dmitri K.</creatorcontrib><creatorcontrib>Baumberger, Felix</creatorcontrib><title>Observation of flat bands in twisted bilayer graphene</title><title>Nature physics</title><addtitle>Nat. Phys</addtitle><description>Transport experiments in twisted bilayer graphene have revealed multiple superconducting domes separated by correlated insulating states 1 – 5 . These properties are generally associated with strongly correlated states in a flat mini-band of the hexagonal moiré superlattice as was predicted by band structure calculations 6 – 8 . Evidence for the existence of a flat band comes from local tunnelling spectroscopy 9 – 13 and electronic compressibility measurements 14 , which report two or more sharp peaks in the density of states that may be associated with closely spaced Van Hove singularities. However, direct momentum-resolved measurements have proved to be challenging 15 . Here, we combine different imaging techniques and angle-resolved photoemission with simultaneous real- and momentum-space resolution (nano-ARPES) to directly map the band dispersion in twisted bilayer graphene devices near charge neutrality. Our experiments reveal large areas with a homogeneous twist angle that support a flat band with a spectral weight that is highly localized in momentum space. The flat band is separated from the dispersive Dirac bands, which show multiple moiré hybridization gaps. These data establish the salient features of the twisted bilayer graphene band structure. Spectroscopic measurements using nano-ARPES on twisted bilayer graphene directly highlight the presence of the flat bands.</description><subject>639/301/1005</subject><subject>639/766/119/995</subject><subject>Atomic</subject><subject>Band structure of solids</subject><subject>Bilayers</subject><subject>Classical and Continuum Physics</subject><subject>Complex Systems</subject><subject>Compressibility</subject><subject>Condensed Matter Physics</subject><subject>Dispersion</subject><subject>Graphene</subject><subject>Imaging techniques</subject><subject>Letter</subject><subject>Mathematical and Computational Physics</subject><subject>Molecular</subject><subject>Momentum</subject><subject>Optical and Plasma Physics</subject><subject>Photoelectric emission</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Superlattices</subject><subject>Theoretical</subject><issn>1745-2473</issn><issn>1745-2481</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kDtPAzEQhC0EEiHwB6gsURv8fpQoAoIUKQ3Ull8XLgp3wb5A8u8xHIKOareYmd35ALgk-Jpgpm8KJ0IqhClGmGBO0P4ITIjiAlGuyfHvrtgpOCtljTGnkrAJEEtfUn53Q9t3sG9gs3ED9K6LBbYdHD7aMqQIfbtxh5ThKrvtS-rSOThp3Kaki585Bc_3d0-zOVosHx5ntwsUmBYD8ikYaQQTKUhaP1AxeKq4lgw7n4wh3mAdpZfCRB6Va6g2URDPXQih0YFNwdWYu8392y6Vwa77Xe7qSVt7aaUop6qq6KgKuS8lp8Zuc_vq8sESbL_w2BGPrXjsNx67ryY2mkoVd6uU_6L_cX0C8sJoEA</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Lisi, Simone</creator><creator>Lu, Xiaobo</creator><creator>Benschop, Tjerk</creator><creator>de Jong, Tobias A.</creator><creator>Stepanov, Petr</creator><creator>Duran, Jose R.</creator><creator>Margot, Florian</creator><creator>Cucchi, Irène</creator><creator>Cappelli, Edoardo</creator><creator>Hunter, Andrew</creator><creator>Tamai, Anna</creator><creator>Kandyba, Viktor</creator><creator>Giampietri, Alessio</creator><creator>Barinov, Alexei</creator><creator>Jobst, Johannes</creator><creator>Stalman, Vincent</creator><creator>Leeuwenhoek, Maarten</creator><creator>Watanabe, Kenji</creator><creator>Taniguchi, Takashi</creator><creator>Rademaker, Louk</creator><creator>van der Molen, Sense Jan</creator><creator>Allan, Milan P.</creator><creator>Efetov, Dmitri K.</creator><creator>Baumberger, Felix</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-5862-0462</orcidid><orcidid>https://orcid.org/0000-0001-7104-7541</orcidid><orcidid>https://orcid.org/0000-0003-3181-2055</orcidid><orcidid>https://orcid.org/0000-0001-6053-8150</orcidid><orcidid>https://orcid.org/0000-0002-0711-863X</orcidid><orcidid>https://orcid.org/0000-0002-1467-3105</orcidid><orcidid>https://orcid.org/0000-0002-5211-8081</orcidid><orcidid>https://orcid.org/0000-0002-5437-1945</orcidid><orcidid>https://orcid.org/0000-0003-3149-4755</orcidid><orcidid>https://orcid.org/0000-0003-4125-3779</orcidid><orcidid>https://orcid.org/0000-0001-5239-6826</orcidid><orcidid>https://orcid.org/0000-0002-1121-3146</orcidid><orcidid>https://orcid.org/0000-0003-3701-8119</orcidid><orcidid>https://orcid.org/0000-0002-2422-1209</orcidid></search><sort><creationdate>20210201</creationdate><title>Observation of flat bands in twisted bilayer graphene</title><author>Lisi, Simone ; Lu, Xiaobo ; Benschop, Tjerk ; de Jong, Tobias A. ; Stepanov, Petr ; Duran, Jose R. ; Margot, Florian ; Cucchi, Irène ; Cappelli, Edoardo ; Hunter, Andrew ; Tamai, Anna ; Kandyba, Viktor ; Giampietri, Alessio ; Barinov, Alexei ; Jobst, Johannes ; Stalman, Vincent ; Leeuwenhoek, Maarten ; Watanabe, Kenji ; Taniguchi, Takashi ; Rademaker, Louk ; van der Molen, Sense Jan ; Allan, Milan P. ; Efetov, Dmitri K. ; Baumberger, Felix</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-bec969535ec621747dcb2748630abe991b908d6b659d4d7af289d51b4acccf8c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>639/301/1005</topic><topic>639/766/119/995</topic><topic>Atomic</topic><topic>Band structure of solids</topic><topic>Bilayers</topic><topic>Classical and Continuum Physics</topic><topic>Complex Systems</topic><topic>Compressibility</topic><topic>Condensed Matter Physics</topic><topic>Dispersion</topic><topic>Graphene</topic><topic>Imaging techniques</topic><topic>Letter</topic><topic>Mathematical and Computational Physics</topic><topic>Molecular</topic><topic>Momentum</topic><topic>Optical and Plasma Physics</topic><topic>Photoelectric emission</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Superlattices</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lisi, Simone</creatorcontrib><creatorcontrib>Lu, Xiaobo</creatorcontrib><creatorcontrib>Benschop, Tjerk</creatorcontrib><creatorcontrib>de Jong, Tobias A.</creatorcontrib><creatorcontrib>Stepanov, Petr</creatorcontrib><creatorcontrib>Duran, Jose R.</creatorcontrib><creatorcontrib>Margot, Florian</creatorcontrib><creatorcontrib>Cucchi, Irène</creatorcontrib><creatorcontrib>Cappelli, Edoardo</creatorcontrib><creatorcontrib>Hunter, Andrew</creatorcontrib><creatorcontrib>Tamai, Anna</creatorcontrib><creatorcontrib>Kandyba, Viktor</creatorcontrib><creatorcontrib>Giampietri, Alessio</creatorcontrib><creatorcontrib>Barinov, Alexei</creatorcontrib><creatorcontrib>Jobst, Johannes</creatorcontrib><creatorcontrib>Stalman, Vincent</creatorcontrib><creatorcontrib>Leeuwenhoek, Maarten</creatorcontrib><creatorcontrib>Watanabe, Kenji</creatorcontrib><creatorcontrib>Taniguchi, Takashi</creatorcontrib><creatorcontrib>Rademaker, Louk</creatorcontrib><creatorcontrib>van der Molen, Sense Jan</creatorcontrib><creatorcontrib>Allan, Milan P.</creatorcontrib><creatorcontrib>Efetov, Dmitri K.</creatorcontrib><creatorcontrib>Baumberger, Felix</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Nature physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lisi, Simone</au><au>Lu, Xiaobo</au><au>Benschop, Tjerk</au><au>de Jong, Tobias A.</au><au>Stepanov, Petr</au><au>Duran, Jose R.</au><au>Margot, Florian</au><au>Cucchi, Irène</au><au>Cappelli, Edoardo</au><au>Hunter, Andrew</au><au>Tamai, Anna</au><au>Kandyba, Viktor</au><au>Giampietri, Alessio</au><au>Barinov, Alexei</au><au>Jobst, Johannes</au><au>Stalman, Vincent</au><au>Leeuwenhoek, Maarten</au><au>Watanabe, Kenji</au><au>Taniguchi, Takashi</au><au>Rademaker, Louk</au><au>van der Molen, Sense Jan</au><au>Allan, Milan P.</au><au>Efetov, Dmitri K.</au><au>Baumberger, Felix</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Observation of flat bands in twisted bilayer graphene</atitle><jtitle>Nature physics</jtitle><stitle>Nat. Phys</stitle><date>2021-02-01</date><risdate>2021</risdate><volume>17</volume><issue>2</issue><spage>189</spage><epage>193</epage><pages>189-193</pages><issn>1745-2473</issn><eissn>1745-2481</eissn><abstract>Transport experiments in twisted bilayer graphene have revealed multiple superconducting domes separated by correlated insulating states 1 – 5 . These properties are generally associated with strongly correlated states in a flat mini-band of the hexagonal moiré superlattice as was predicted by band structure calculations 6 – 8 . Evidence for the existence of a flat band comes from local tunnelling spectroscopy 9 – 13 and electronic compressibility measurements 14 , which report two or more sharp peaks in the density of states that may be associated with closely spaced Van Hove singularities. However, direct momentum-resolved measurements have proved to be challenging 15 . Here, we combine different imaging techniques and angle-resolved photoemission with simultaneous real- and momentum-space resolution (nano-ARPES) to directly map the band dispersion in twisted bilayer graphene devices near charge neutrality. Our experiments reveal large areas with a homogeneous twist angle that support a flat band with a spectral weight that is highly localized in momentum space. The flat band is separated from the dispersive Dirac bands, which show multiple moiré hybridization gaps. These data establish the salient features of the twisted bilayer graphene band structure. Spectroscopic measurements using nano-ARPES on twisted bilayer graphene directly highlight the presence of the flat bands.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41567-020-01041-x</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-5862-0462</orcidid><orcidid>https://orcid.org/0000-0001-7104-7541</orcidid><orcidid>https://orcid.org/0000-0003-3181-2055</orcidid><orcidid>https://orcid.org/0000-0001-6053-8150</orcidid><orcidid>https://orcid.org/0000-0002-0711-863X</orcidid><orcidid>https://orcid.org/0000-0002-1467-3105</orcidid><orcidid>https://orcid.org/0000-0002-5211-8081</orcidid><orcidid>https://orcid.org/0000-0002-5437-1945</orcidid><orcidid>https://orcid.org/0000-0003-3149-4755</orcidid><orcidid>https://orcid.org/0000-0003-4125-3779</orcidid><orcidid>https://orcid.org/0000-0001-5239-6826</orcidid><orcidid>https://orcid.org/0000-0002-1121-3146</orcidid><orcidid>https://orcid.org/0000-0003-3701-8119</orcidid><orcidid>https://orcid.org/0000-0002-2422-1209</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1745-2473
ispartof Nature physics, 2021-02, Vol.17 (2), p.189-193
issn 1745-2473
1745-2481
language eng
recordid cdi_proquest_journals_2488772427
source Springer Nature - Complete Springer Journals; Nature
subjects 639/301/1005
639/766/119/995
Atomic
Band structure of solids
Bilayers
Classical and Continuum Physics
Complex Systems
Compressibility
Condensed Matter Physics
Dispersion
Graphene
Imaging techniques
Letter
Mathematical and Computational Physics
Molecular
Momentum
Optical and Plasma Physics
Photoelectric emission
Physics
Physics and Astronomy
Superlattices
Theoretical
title Observation of flat bands in twisted bilayer graphene
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T05%3A53%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Observation%20of%20flat%20bands%20in%20twisted%20bilayer%20graphene&rft.jtitle=Nature%20physics&rft.au=Lisi,%20Simone&rft.date=2021-02-01&rft.volume=17&rft.issue=2&rft.spage=189&rft.epage=193&rft.pages=189-193&rft.issn=1745-2473&rft.eissn=1745-2481&rft_id=info:doi/10.1038/s41567-020-01041-x&rft_dat=%3Cproquest_cross%3E2488772427%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2488772427&rft_id=info:pmid/&rfr_iscdi=true