High‐performance implementation of a two‐bit geohash coding technique for nearest neighbor search
Summary Insights from geohash coding algorithms introduce significant opportunities for various spatial applications. However, these algorithms require massive storage, complex bit manipulation, and extensive code modification when scaled to higher dimensions. In this article, we have developed a tw...
Gespeichert in:
Veröffentlicht in: | Concurrency and computation 2021-03, Vol.33 (5), p.n/a |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 5 |
container_start_page | |
container_title | Concurrency and computation |
container_volume | 33 |
creator | M, Varalakshmi Kesarkar, Amit P. Lopez, Daphne |
description | Summary
Insights from geohash coding algorithms introduce significant opportunities for various spatial applications. However, these algorithms require massive storage, complex bit manipulation, and extensive code modification when scaled to higher dimensions. In this article, we have developed a two‐bit geohash coding algorithm that divides the search space into four equal partitions where each partition is assigned a two‐bit label as 00, 01, 10, and 11, which helps to uniquely identify a chosen data point and the two neighbors on its either side, taken along a particular dimension. This salient feature of the algorithm simplifies the generation of geohash code for the neighboring grid cells. In addition, it achieves efficient memory utilization by storing the geohash values of the training points as integers. Demonstrated by experiments for climate data assimilation, model‐to‐observation space mapping with a geohash code length of 24 bits for Lat‐Lon extent of India has shown favorable results with an accuracy of 85%. Performance and scalability evaluation of the proposed algorithm, optimized for multicore and many‐core processors has shown significant speedups outperforming a tree‐based approach. This algorithm provides a foundation for new spatial statistical methods that can be used for pattern discovery and detection in spatial big data. |
doi_str_mv | 10.1002/cpe.6029 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2488767616</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2488767616</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2939-2d075a2208d50be69a160b49f4544658532e99f106fee79b6b5910f31624a3963</originalsourceid><addsrcrecordid>eNp1kEFOwzAQRS0EEqUgcQRLbNikjJ3EiZeoKhSpEixgbTnpuHHVxMFOVXXHETgjJ8GliB2rGX29-TPzCblmMGEA_K7ucSKAyxMyYnnKExBpdvrXc3FOLkJYAzAGKRsRnNtV8_Xx2aM3zre6q5Hatt9gi92gB-s66gzVdNi5SFV2oCt0jQ4Nrd3Sdis6YN109n2LNM7TDrXHMMQabasohCjUzSU5M3oT8Oq3jsnbw-x1Ok8Wz49P0_tFUnOZyoQvocg151Auc6hQSM0EVJk0WZ5lIi_jDyilYSAMYiErUeWSgUmZ4JlOpUjH5Obo23sXTwqDWrut7-JKxbOyLEQh2IG6PVK1dyF4NKr3ttV-rxioQ4gqhqgOIUY0OaI7u8H9v5yavsx--G9uX3RS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2488767616</pqid></control><display><type>article</type><title>High‐performance implementation of a two‐bit geohash coding technique for nearest neighbor search</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>M, Varalakshmi ; Kesarkar, Amit P. ; Lopez, Daphne</creator><creatorcontrib>M, Varalakshmi ; Kesarkar, Amit P. ; Lopez, Daphne</creatorcontrib><description>Summary
Insights from geohash coding algorithms introduce significant opportunities for various spatial applications. However, these algorithms require massive storage, complex bit manipulation, and extensive code modification when scaled to higher dimensions. In this article, we have developed a two‐bit geohash coding algorithm that divides the search space into four equal partitions where each partition is assigned a two‐bit label as 00, 01, 10, and 11, which helps to uniquely identify a chosen data point and the two neighbors on its either side, taken along a particular dimension. This salient feature of the algorithm simplifies the generation of geohash code for the neighboring grid cells. In addition, it achieves efficient memory utilization by storing the geohash values of the training points as integers. Demonstrated by experiments for climate data assimilation, model‐to‐observation space mapping with a geohash code length of 24 bits for Lat‐Lon extent of India has shown favorable results with an accuracy of 85%. Performance and scalability evaluation of the proposed algorithm, optimized for multicore and many‐core processors has shown significant speedups outperforming a tree‐based approach. This algorithm provides a foundation for new spatial statistical methods that can be used for pattern discovery and detection in spatial big data.</description><identifier>ISSN: 1532-0626</identifier><identifier>EISSN: 1532-0634</identifier><identifier>DOI: 10.1002/cpe.6029</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Algorithms ; climate data assimilation ; Coding ; Data points ; many‐core processors ; Massive data points ; Microprocessors ; nearest neighbor ; parallel geohash ; Partitions ; Performance evaluation ; spatial applications ; Spatial data ; Statistical methods ; Storage ; two‐bit geohash coding</subject><ispartof>Concurrency and computation, 2021-03, Vol.33 (5), p.n/a</ispartof><rights>2020 John Wiley & Sons Ltd</rights><rights>2021 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2939-2d075a2208d50be69a160b49f4544658532e99f106fee79b6b5910f31624a3963</citedby><cites>FETCH-LOGICAL-c2939-2d075a2208d50be69a160b49f4544658532e99f106fee79b6b5910f31624a3963</cites><orcidid>0000-0002-6069-0088</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcpe.6029$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcpe.6029$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>M, Varalakshmi</creatorcontrib><creatorcontrib>Kesarkar, Amit P.</creatorcontrib><creatorcontrib>Lopez, Daphne</creatorcontrib><title>High‐performance implementation of a two‐bit geohash coding technique for nearest neighbor search</title><title>Concurrency and computation</title><description>Summary
Insights from geohash coding algorithms introduce significant opportunities for various spatial applications. However, these algorithms require massive storage, complex bit manipulation, and extensive code modification when scaled to higher dimensions. In this article, we have developed a two‐bit geohash coding algorithm that divides the search space into four equal partitions where each partition is assigned a two‐bit label as 00, 01, 10, and 11, which helps to uniquely identify a chosen data point and the two neighbors on its either side, taken along a particular dimension. This salient feature of the algorithm simplifies the generation of geohash code for the neighboring grid cells. In addition, it achieves efficient memory utilization by storing the geohash values of the training points as integers. Demonstrated by experiments for climate data assimilation, model‐to‐observation space mapping with a geohash code length of 24 bits for Lat‐Lon extent of India has shown favorable results with an accuracy of 85%. Performance and scalability evaluation of the proposed algorithm, optimized for multicore and many‐core processors has shown significant speedups outperforming a tree‐based approach. This algorithm provides a foundation for new spatial statistical methods that can be used for pattern discovery and detection in spatial big data.</description><subject>Algorithms</subject><subject>climate data assimilation</subject><subject>Coding</subject><subject>Data points</subject><subject>many‐core processors</subject><subject>Massive data points</subject><subject>Microprocessors</subject><subject>nearest neighbor</subject><subject>parallel geohash</subject><subject>Partitions</subject><subject>Performance evaluation</subject><subject>spatial applications</subject><subject>Spatial data</subject><subject>Statistical methods</subject><subject>Storage</subject><subject>two‐bit geohash coding</subject><issn>1532-0626</issn><issn>1532-0634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kEFOwzAQRS0EEqUgcQRLbNikjJ3EiZeoKhSpEixgbTnpuHHVxMFOVXXHETgjJ8GliB2rGX29-TPzCblmMGEA_K7ucSKAyxMyYnnKExBpdvrXc3FOLkJYAzAGKRsRnNtV8_Xx2aM3zre6q5Hatt9gi92gB-s66gzVdNi5SFV2oCt0jQ4Nrd3Sdis6YN109n2LNM7TDrXHMMQabasohCjUzSU5M3oT8Oq3jsnbw-x1Ok8Wz49P0_tFUnOZyoQvocg151Auc6hQSM0EVJk0WZ5lIi_jDyilYSAMYiErUeWSgUmZ4JlOpUjH5Obo23sXTwqDWrut7-JKxbOyLEQh2IG6PVK1dyF4NKr3ttV-rxioQ4gqhqgOIUY0OaI7u8H9v5yavsx--G9uX3RS</recordid><startdate>20210310</startdate><enddate>20210310</enddate><creator>M, Varalakshmi</creator><creator>Kesarkar, Amit P.</creator><creator>Lopez, Daphne</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-6069-0088</orcidid></search><sort><creationdate>20210310</creationdate><title>High‐performance implementation of a two‐bit geohash coding technique for nearest neighbor search</title><author>M, Varalakshmi ; Kesarkar, Amit P. ; Lopez, Daphne</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2939-2d075a2208d50be69a160b49f4544658532e99f106fee79b6b5910f31624a3963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>climate data assimilation</topic><topic>Coding</topic><topic>Data points</topic><topic>many‐core processors</topic><topic>Massive data points</topic><topic>Microprocessors</topic><topic>nearest neighbor</topic><topic>parallel geohash</topic><topic>Partitions</topic><topic>Performance evaluation</topic><topic>spatial applications</topic><topic>Spatial data</topic><topic>Statistical methods</topic><topic>Storage</topic><topic>two‐bit geohash coding</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>M, Varalakshmi</creatorcontrib><creatorcontrib>Kesarkar, Amit P.</creatorcontrib><creatorcontrib>Lopez, Daphne</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Concurrency and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>M, Varalakshmi</au><au>Kesarkar, Amit P.</au><au>Lopez, Daphne</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High‐performance implementation of a two‐bit geohash coding technique for nearest neighbor search</atitle><jtitle>Concurrency and computation</jtitle><date>2021-03-10</date><risdate>2021</risdate><volume>33</volume><issue>5</issue><epage>n/a</epage><issn>1532-0626</issn><eissn>1532-0634</eissn><abstract>Summary
Insights from geohash coding algorithms introduce significant opportunities for various spatial applications. However, these algorithms require massive storage, complex bit manipulation, and extensive code modification when scaled to higher dimensions. In this article, we have developed a two‐bit geohash coding algorithm that divides the search space into four equal partitions where each partition is assigned a two‐bit label as 00, 01, 10, and 11, which helps to uniquely identify a chosen data point and the two neighbors on its either side, taken along a particular dimension. This salient feature of the algorithm simplifies the generation of geohash code for the neighboring grid cells. In addition, it achieves efficient memory utilization by storing the geohash values of the training points as integers. Demonstrated by experiments for climate data assimilation, model‐to‐observation space mapping with a geohash code length of 24 bits for Lat‐Lon extent of India has shown favorable results with an accuracy of 85%. Performance and scalability evaluation of the proposed algorithm, optimized for multicore and many‐core processors has shown significant speedups outperforming a tree‐based approach. This algorithm provides a foundation for new spatial statistical methods that can be used for pattern discovery and detection in spatial big data.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/cpe.6029</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0002-6069-0088</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1532-0626 |
ispartof | Concurrency and computation, 2021-03, Vol.33 (5), p.n/a |
issn | 1532-0626 1532-0634 |
language | eng |
recordid | cdi_proquest_journals_2488767616 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Algorithms climate data assimilation Coding Data points many‐core processors Massive data points Microprocessors nearest neighbor parallel geohash Partitions Performance evaluation spatial applications Spatial data Statistical methods Storage two‐bit geohash coding |
title | High‐performance implementation of a two‐bit geohash coding technique for nearest neighbor search |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T20%3A59%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%E2%80%90performance%20implementation%20of%20a%20two%E2%80%90bit%20geohash%20coding%20technique%20for%20nearest%20neighbor%20search&rft.jtitle=Concurrency%20and%20computation&rft.au=M,%20Varalakshmi&rft.date=2021-03-10&rft.volume=33&rft.issue=5&rft.epage=n/a&rft.issn=1532-0626&rft.eissn=1532-0634&rft_id=info:doi/10.1002/cpe.6029&rft_dat=%3Cproquest_cross%3E2488767616%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2488767616&rft_id=info:pmid/&rfr_iscdi=true |