High‐performance implementation of a two‐bit geohash coding technique for nearest neighbor search

Summary Insights from geohash coding algorithms introduce significant opportunities for various spatial applications. However, these algorithms require massive storage, complex bit manipulation, and extensive code modification when scaled to higher dimensions. In this article, we have developed a tw...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Concurrency and computation 2021-03, Vol.33 (5), p.n/a
Hauptverfasser: M, Varalakshmi, Kesarkar, Amit P., Lopez, Daphne
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 5
container_start_page
container_title Concurrency and computation
container_volume 33
creator M, Varalakshmi
Kesarkar, Amit P.
Lopez, Daphne
description Summary Insights from geohash coding algorithms introduce significant opportunities for various spatial applications. However, these algorithms require massive storage, complex bit manipulation, and extensive code modification when scaled to higher dimensions. In this article, we have developed a two‐bit geohash coding algorithm that divides the search space into four equal partitions where each partition is assigned a two‐bit label as 00, 01, 10, and 11, which helps to uniquely identify a chosen data point and the two neighbors on its either side, taken along a particular dimension. This salient feature of the algorithm simplifies the generation of geohash code for the neighboring grid cells. In addition, it achieves efficient memory utilization by storing the geohash values of the training points as integers. Demonstrated by experiments for climate data assimilation, model‐to‐observation space mapping with a geohash code length of 24 bits for Lat‐Lon extent of India has shown favorable results with an accuracy of 85%. Performance and scalability evaluation of the proposed algorithm, optimized for multicore and many‐core processors has shown significant speedups outperforming a tree‐based approach. This algorithm provides a foundation for new spatial statistical methods that can be used for pattern discovery and detection in spatial big data.
doi_str_mv 10.1002/cpe.6029
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2488767616</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2488767616</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2939-2d075a2208d50be69a160b49f4544658532e99f106fee79b6b5910f31624a3963</originalsourceid><addsrcrecordid>eNp1kEFOwzAQRS0EEqUgcQRLbNikjJ3EiZeoKhSpEixgbTnpuHHVxMFOVXXHETgjJ8GliB2rGX29-TPzCblmMGEA_K7ucSKAyxMyYnnKExBpdvrXc3FOLkJYAzAGKRsRnNtV8_Xx2aM3zre6q5Hatt9gi92gB-s66gzVdNi5SFV2oCt0jQ4Nrd3Sdis6YN109n2LNM7TDrXHMMQabasohCjUzSU5M3oT8Oq3jsnbw-x1Ok8Wz49P0_tFUnOZyoQvocg151Auc6hQSM0EVJk0WZ5lIi_jDyilYSAMYiErUeWSgUmZ4JlOpUjH5Obo23sXTwqDWrut7-JKxbOyLEQh2IG6PVK1dyF4NKr3ttV-rxioQ4gqhqgOIUY0OaI7u8H9v5yavsx--G9uX3RS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2488767616</pqid></control><display><type>article</type><title>High‐performance implementation of a two‐bit geohash coding technique for nearest neighbor search</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>M, Varalakshmi ; Kesarkar, Amit P. ; Lopez, Daphne</creator><creatorcontrib>M, Varalakshmi ; Kesarkar, Amit P. ; Lopez, Daphne</creatorcontrib><description>Summary Insights from geohash coding algorithms introduce significant opportunities for various spatial applications. However, these algorithms require massive storage, complex bit manipulation, and extensive code modification when scaled to higher dimensions. In this article, we have developed a two‐bit geohash coding algorithm that divides the search space into four equal partitions where each partition is assigned a two‐bit label as 00, 01, 10, and 11, which helps to uniquely identify a chosen data point and the two neighbors on its either side, taken along a particular dimension. This salient feature of the algorithm simplifies the generation of geohash code for the neighboring grid cells. In addition, it achieves efficient memory utilization by storing the geohash values of the training points as integers. Demonstrated by experiments for climate data assimilation, model‐to‐observation space mapping with a geohash code length of 24 bits for Lat‐Lon extent of India has shown favorable results with an accuracy of 85%. Performance and scalability evaluation of the proposed algorithm, optimized for multicore and many‐core processors has shown significant speedups outperforming a tree‐based approach. This algorithm provides a foundation for new spatial statistical methods that can be used for pattern discovery and detection in spatial big data.</description><identifier>ISSN: 1532-0626</identifier><identifier>EISSN: 1532-0634</identifier><identifier>DOI: 10.1002/cpe.6029</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Algorithms ; climate data assimilation ; Coding ; Data points ; many‐core processors ; Massive data points ; Microprocessors ; nearest neighbor ; parallel geohash ; Partitions ; Performance evaluation ; spatial applications ; Spatial data ; Statistical methods ; Storage ; two‐bit geohash coding</subject><ispartof>Concurrency and computation, 2021-03, Vol.33 (5), p.n/a</ispartof><rights>2020 John Wiley &amp; Sons Ltd</rights><rights>2021 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2939-2d075a2208d50be69a160b49f4544658532e99f106fee79b6b5910f31624a3963</citedby><cites>FETCH-LOGICAL-c2939-2d075a2208d50be69a160b49f4544658532e99f106fee79b6b5910f31624a3963</cites><orcidid>0000-0002-6069-0088</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcpe.6029$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcpe.6029$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>M, Varalakshmi</creatorcontrib><creatorcontrib>Kesarkar, Amit P.</creatorcontrib><creatorcontrib>Lopez, Daphne</creatorcontrib><title>High‐performance implementation of a two‐bit geohash coding technique for nearest neighbor search</title><title>Concurrency and computation</title><description>Summary Insights from geohash coding algorithms introduce significant opportunities for various spatial applications. However, these algorithms require massive storage, complex bit manipulation, and extensive code modification when scaled to higher dimensions. In this article, we have developed a two‐bit geohash coding algorithm that divides the search space into four equal partitions where each partition is assigned a two‐bit label as 00, 01, 10, and 11, which helps to uniquely identify a chosen data point and the two neighbors on its either side, taken along a particular dimension. This salient feature of the algorithm simplifies the generation of geohash code for the neighboring grid cells. In addition, it achieves efficient memory utilization by storing the geohash values of the training points as integers. Demonstrated by experiments for climate data assimilation, model‐to‐observation space mapping with a geohash code length of 24 bits for Lat‐Lon extent of India has shown favorable results with an accuracy of 85%. Performance and scalability evaluation of the proposed algorithm, optimized for multicore and many‐core processors has shown significant speedups outperforming a tree‐based approach. This algorithm provides a foundation for new spatial statistical methods that can be used for pattern discovery and detection in spatial big data.</description><subject>Algorithms</subject><subject>climate data assimilation</subject><subject>Coding</subject><subject>Data points</subject><subject>many‐core processors</subject><subject>Massive data points</subject><subject>Microprocessors</subject><subject>nearest neighbor</subject><subject>parallel geohash</subject><subject>Partitions</subject><subject>Performance evaluation</subject><subject>spatial applications</subject><subject>Spatial data</subject><subject>Statistical methods</subject><subject>Storage</subject><subject>two‐bit geohash coding</subject><issn>1532-0626</issn><issn>1532-0634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kEFOwzAQRS0EEqUgcQRLbNikjJ3EiZeoKhSpEixgbTnpuHHVxMFOVXXHETgjJ8GliB2rGX29-TPzCblmMGEA_K7ucSKAyxMyYnnKExBpdvrXc3FOLkJYAzAGKRsRnNtV8_Xx2aM3zre6q5Hatt9gi92gB-s66gzVdNi5SFV2oCt0jQ4Nrd3Sdis6YN109n2LNM7TDrXHMMQabasohCjUzSU5M3oT8Oq3jsnbw-x1Ok8Wz49P0_tFUnOZyoQvocg151Auc6hQSM0EVJk0WZ5lIi_jDyilYSAMYiErUeWSgUmZ4JlOpUjH5Obo23sXTwqDWrut7-JKxbOyLEQh2IG6PVK1dyF4NKr3ttV-rxioQ4gqhqgOIUY0OaI7u8H9v5yavsx--G9uX3RS</recordid><startdate>20210310</startdate><enddate>20210310</enddate><creator>M, Varalakshmi</creator><creator>Kesarkar, Amit P.</creator><creator>Lopez, Daphne</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-6069-0088</orcidid></search><sort><creationdate>20210310</creationdate><title>High‐performance implementation of a two‐bit geohash coding technique for nearest neighbor search</title><author>M, Varalakshmi ; Kesarkar, Amit P. ; Lopez, Daphne</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2939-2d075a2208d50be69a160b49f4544658532e99f106fee79b6b5910f31624a3963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>climate data assimilation</topic><topic>Coding</topic><topic>Data points</topic><topic>many‐core processors</topic><topic>Massive data points</topic><topic>Microprocessors</topic><topic>nearest neighbor</topic><topic>parallel geohash</topic><topic>Partitions</topic><topic>Performance evaluation</topic><topic>spatial applications</topic><topic>Spatial data</topic><topic>Statistical methods</topic><topic>Storage</topic><topic>two‐bit geohash coding</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>M, Varalakshmi</creatorcontrib><creatorcontrib>Kesarkar, Amit P.</creatorcontrib><creatorcontrib>Lopez, Daphne</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Concurrency and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>M, Varalakshmi</au><au>Kesarkar, Amit P.</au><au>Lopez, Daphne</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High‐performance implementation of a two‐bit geohash coding technique for nearest neighbor search</atitle><jtitle>Concurrency and computation</jtitle><date>2021-03-10</date><risdate>2021</risdate><volume>33</volume><issue>5</issue><epage>n/a</epage><issn>1532-0626</issn><eissn>1532-0634</eissn><abstract>Summary Insights from geohash coding algorithms introduce significant opportunities for various spatial applications. However, these algorithms require massive storage, complex bit manipulation, and extensive code modification when scaled to higher dimensions. In this article, we have developed a two‐bit geohash coding algorithm that divides the search space into four equal partitions where each partition is assigned a two‐bit label as 00, 01, 10, and 11, which helps to uniquely identify a chosen data point and the two neighbors on its either side, taken along a particular dimension. This salient feature of the algorithm simplifies the generation of geohash code for the neighboring grid cells. In addition, it achieves efficient memory utilization by storing the geohash values of the training points as integers. Demonstrated by experiments for climate data assimilation, model‐to‐observation space mapping with a geohash code length of 24 bits for Lat‐Lon extent of India has shown favorable results with an accuracy of 85%. Performance and scalability evaluation of the proposed algorithm, optimized for multicore and many‐core processors has shown significant speedups outperforming a tree‐based approach. This algorithm provides a foundation for new spatial statistical methods that can be used for pattern discovery and detection in spatial big data.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/cpe.6029</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0002-6069-0088</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1532-0626
ispartof Concurrency and computation, 2021-03, Vol.33 (5), p.n/a
issn 1532-0626
1532-0634
language eng
recordid cdi_proquest_journals_2488767616
source Wiley Online Library Journals Frontfile Complete
subjects Algorithms
climate data assimilation
Coding
Data points
many‐core processors
Massive data points
Microprocessors
nearest neighbor
parallel geohash
Partitions
Performance evaluation
spatial applications
Spatial data
Statistical methods
Storage
two‐bit geohash coding
title High‐performance implementation of a two‐bit geohash coding technique for nearest neighbor search
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T20%3A59%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%E2%80%90performance%20implementation%20of%20a%20two%E2%80%90bit%20geohash%20coding%20technique%20for%20nearest%20neighbor%20search&rft.jtitle=Concurrency%20and%20computation&rft.au=M,%20Varalakshmi&rft.date=2021-03-10&rft.volume=33&rft.issue=5&rft.epage=n/a&rft.issn=1532-0626&rft.eissn=1532-0634&rft_id=info:doi/10.1002/cpe.6029&rft_dat=%3Cproquest_cross%3E2488767616%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2488767616&rft_id=info:pmid/&rfr_iscdi=true