Optimization of film over nanosphere substrate fabrication for SERS sensing of the allergen soybean agglutinin
Metal film over nanosphere (FON) substrates are a mainstay of surface‐enhanced Raman scattering (SERS) measurements because they are inexpensive to fabricate, have predictable enhancement factors, and are relatively robust. This work includes a systematic investigation of how the three major FON fab...
Gespeichert in:
Veröffentlicht in: | Journal of Raman spectroscopy 2021-02, Vol.52 (2), p.482-490 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 490 |
---|---|
container_issue | 2 |
container_start_page | 482 |
container_title | Journal of Raman spectroscopy |
container_volume | 52 |
creator | Styles, Matthew J. Rodriguez, Rebeca S. Szlag, Victoria M. Bryson, Samuel Gao, Zhe Jung, Seyoung Reineke, Theresa M. Haynes, Christy L. |
description | Metal film over nanosphere (FON) substrates are a mainstay of surface‐enhanced Raman scattering (SERS) measurements because they are inexpensive to fabricate, have predictable enhancement factors, and are relatively robust. This work includes a systematic investigation of how the three major FON fabrication parameters—nanosphere size, deposited metal thickness, and metal choice—impact the resulting localized surface plasmon resonance (LSPR). With these three parameters, it is quite simple to fabricate FONs with an optimal LSPR for SERS experiments with various excitation wavelengths. Some SERS experiments require that the substrates be incubated in organic solvents that have the potential to damage the substrate; as such, this work also explores how solvent incubation impacts the physical and optical properties of the FON substrate. Although no significant increase in physical damage is obvious, the LSPR does shift significantly. Finally, these optimized FONs were employed for the sensing of an important allergen, soybean agglutinin. The FONs were modified with a glycopolymer that has affinity for soybean agglutinin and clear Raman bands demonstrate detection of 10 μg/ml soybean agglutinin. Overall, this work serves the dual purpose of both sharing critical details about FON design and demonstrating detection of an important lectin analyte.
This work studies the optimization of metal film over nanosphere SERS substrates for biosensing applications. The noble metal used, size of packed spheres, and solvent stability all play a role in optimizing these substrates. Herein, we focus on sensing a soybean agglutinin protein with a linear glycopolymer attached at the substrate surface and monitor binding via SERS. |
doi_str_mv | 10.1002/jrs.6019 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2488767609</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2488767609</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3599-f5dcab3ce33985e0c7061a380a88391ffead9cad03eff09748034594c56aa00e3</originalsourceid><addsrcrecordid>eNp10MtOwzAQBVALgUR5SHyCJTZsUiZ1nNhLVJWXKlVqYR057jh1ldrBTkHl60kJW1azOXNHcwm5SWGcAkzutyGOc0jlCRmlIIsk45yfkhGwokggE_k5uYhxCwBS5umIuEXb2Z39Vp31jnpDjW121H9ioE45H9sNBqRxX8UuqA6pUVWwetDGB7qaLVc0oovW1cf1boNUNQ2GGh2N_lChclTVdbPvrLPuipwZ1US8_puX5P1x9jZ9TuaLp5fpwzzRjEuZGL7WqmIaGZOCI-gC8lQxAUoIJlNjUK2lVmtgaEz_ZSaAZVxmmudKASC7JLdDbhv8xx5jV279Prj-ZDnJhCjyIgfZq7tB6eBjDGjKNtidCocyhfLYZtm3WR7b7Gky0C_b4OFfV74uV7_-B3krd_I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2488767609</pqid></control><display><type>article</type><title>Optimization of film over nanosphere substrate fabrication for SERS sensing of the allergen soybean agglutinin</title><source>Wiley Online Library All Journals</source><creator>Styles, Matthew J. ; Rodriguez, Rebeca S. ; Szlag, Victoria M. ; Bryson, Samuel ; Gao, Zhe ; Jung, Seyoung ; Reineke, Theresa M. ; Haynes, Christy L.</creator><creatorcontrib>Styles, Matthew J. ; Rodriguez, Rebeca S. ; Szlag, Victoria M. ; Bryson, Samuel ; Gao, Zhe ; Jung, Seyoung ; Reineke, Theresa M. ; Haynes, Christy L.</creatorcontrib><description>Metal film over nanosphere (FON) substrates are a mainstay of surface‐enhanced Raman scattering (SERS) measurements because they are inexpensive to fabricate, have predictable enhancement factors, and are relatively robust. This work includes a systematic investigation of how the three major FON fabrication parameters—nanosphere size, deposited metal thickness, and metal choice—impact the resulting localized surface plasmon resonance (LSPR). With these three parameters, it is quite simple to fabricate FONs with an optimal LSPR for SERS experiments with various excitation wavelengths. Some SERS experiments require that the substrates be incubated in organic solvents that have the potential to damage the substrate; as such, this work also explores how solvent incubation impacts the physical and optical properties of the FON substrate. Although no significant increase in physical damage is obvious, the LSPR does shift significantly. Finally, these optimized FONs were employed for the sensing of an important allergen, soybean agglutinin. The FONs were modified with a glycopolymer that has affinity for soybean agglutinin and clear Raman bands demonstrate detection of 10 μg/ml soybean agglutinin. Overall, this work serves the dual purpose of both sharing critical details about FON design and demonstrating detection of an important lectin analyte.
This work studies the optimization of metal film over nanosphere SERS substrates for biosensing applications. The noble metal used, size of packed spheres, and solvent stability all play a role in optimizing these substrates. Herein, we focus on sensing a soybean agglutinin protein with a linear glycopolymer attached at the substrate surface and monitor binding via SERS.</description><identifier>ISSN: 0377-0486</identifier><identifier>EISSN: 1097-4555</identifier><identifier>DOI: 10.1002/jrs.6019</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>allergen ; Allergens ; biosensing ; Damage ; Fabrication ; FON ; Glycopolymers ; Nanospheres ; Optical properties ; Optimization ; Organic solvents ; Parameters ; Raman spectra ; SERS ; Solvents ; Soybeans ; stability ; Substrates ; Surface plasmon resonance ; Wavelengths</subject><ispartof>Journal of Raman spectroscopy, 2021-02, Vol.52 (2), p.482-490</ispartof><rights>2020 John Wiley & Sons, Ltd.</rights><rights>2021 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3599-f5dcab3ce33985e0c7061a380a88391ffead9cad03eff09748034594c56aa00e3</citedby><cites>FETCH-LOGICAL-c3599-f5dcab3ce33985e0c7061a380a88391ffead9cad03eff09748034594c56aa00e3</cites><orcidid>0000-0002-8994-554X ; 0000-0002-5420-5867</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjrs.6019$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjrs.6019$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids></links><search><creatorcontrib>Styles, Matthew J.</creatorcontrib><creatorcontrib>Rodriguez, Rebeca S.</creatorcontrib><creatorcontrib>Szlag, Victoria M.</creatorcontrib><creatorcontrib>Bryson, Samuel</creatorcontrib><creatorcontrib>Gao, Zhe</creatorcontrib><creatorcontrib>Jung, Seyoung</creatorcontrib><creatorcontrib>Reineke, Theresa M.</creatorcontrib><creatorcontrib>Haynes, Christy L.</creatorcontrib><title>Optimization of film over nanosphere substrate fabrication for SERS sensing of the allergen soybean agglutinin</title><title>Journal of Raman spectroscopy</title><description>Metal film over nanosphere (FON) substrates are a mainstay of surface‐enhanced Raman scattering (SERS) measurements because they are inexpensive to fabricate, have predictable enhancement factors, and are relatively robust. This work includes a systematic investigation of how the three major FON fabrication parameters—nanosphere size, deposited metal thickness, and metal choice—impact the resulting localized surface plasmon resonance (LSPR). With these three parameters, it is quite simple to fabricate FONs with an optimal LSPR for SERS experiments with various excitation wavelengths. Some SERS experiments require that the substrates be incubated in organic solvents that have the potential to damage the substrate; as such, this work also explores how solvent incubation impacts the physical and optical properties of the FON substrate. Although no significant increase in physical damage is obvious, the LSPR does shift significantly. Finally, these optimized FONs were employed for the sensing of an important allergen, soybean agglutinin. The FONs were modified with a glycopolymer that has affinity for soybean agglutinin and clear Raman bands demonstrate detection of 10 μg/ml soybean agglutinin. Overall, this work serves the dual purpose of both sharing critical details about FON design and demonstrating detection of an important lectin analyte.
This work studies the optimization of metal film over nanosphere SERS substrates for biosensing applications. The noble metal used, size of packed spheres, and solvent stability all play a role in optimizing these substrates. Herein, we focus on sensing a soybean agglutinin protein with a linear glycopolymer attached at the substrate surface and monitor binding via SERS.</description><subject>allergen</subject><subject>Allergens</subject><subject>biosensing</subject><subject>Damage</subject><subject>Fabrication</subject><subject>FON</subject><subject>Glycopolymers</subject><subject>Nanospheres</subject><subject>Optical properties</subject><subject>Optimization</subject><subject>Organic solvents</subject><subject>Parameters</subject><subject>Raman spectra</subject><subject>SERS</subject><subject>Solvents</subject><subject>Soybeans</subject><subject>stability</subject><subject>Substrates</subject><subject>Surface plasmon resonance</subject><subject>Wavelengths</subject><issn>0377-0486</issn><issn>1097-4555</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp10MtOwzAQBVALgUR5SHyCJTZsUiZ1nNhLVJWXKlVqYR057jh1ldrBTkHl60kJW1azOXNHcwm5SWGcAkzutyGOc0jlCRmlIIsk45yfkhGwokggE_k5uYhxCwBS5umIuEXb2Z39Vp31jnpDjW121H9ioE45H9sNBqRxX8UuqA6pUVWwetDGB7qaLVc0oovW1cf1boNUNQ2GGh2N_lChclTVdbPvrLPuipwZ1US8_puX5P1x9jZ9TuaLp5fpwzzRjEuZGL7WqmIaGZOCI-gC8lQxAUoIJlNjUK2lVmtgaEz_ZSaAZVxmmudKASC7JLdDbhv8xx5jV279Prj-ZDnJhCjyIgfZq7tB6eBjDGjKNtidCocyhfLYZtm3WR7b7Gky0C_b4OFfV74uV7_-B3krd_I</recordid><startdate>202102</startdate><enddate>202102</enddate><creator>Styles, Matthew J.</creator><creator>Rodriguez, Rebeca S.</creator><creator>Szlag, Victoria M.</creator><creator>Bryson, Samuel</creator><creator>Gao, Zhe</creator><creator>Jung, Seyoung</creator><creator>Reineke, Theresa M.</creator><creator>Haynes, Christy L.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>RC3</scope><orcidid>https://orcid.org/0000-0002-8994-554X</orcidid><orcidid>https://orcid.org/0000-0002-5420-5867</orcidid></search><sort><creationdate>202102</creationdate><title>Optimization of film over nanosphere substrate fabrication for SERS sensing of the allergen soybean agglutinin</title><author>Styles, Matthew J. ; Rodriguez, Rebeca S. ; Szlag, Victoria M. ; Bryson, Samuel ; Gao, Zhe ; Jung, Seyoung ; Reineke, Theresa M. ; Haynes, Christy L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3599-f5dcab3ce33985e0c7061a380a88391ffead9cad03eff09748034594c56aa00e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>allergen</topic><topic>Allergens</topic><topic>biosensing</topic><topic>Damage</topic><topic>Fabrication</topic><topic>FON</topic><topic>Glycopolymers</topic><topic>Nanospheres</topic><topic>Optical properties</topic><topic>Optimization</topic><topic>Organic solvents</topic><topic>Parameters</topic><topic>Raman spectra</topic><topic>SERS</topic><topic>Solvents</topic><topic>Soybeans</topic><topic>stability</topic><topic>Substrates</topic><topic>Surface plasmon resonance</topic><topic>Wavelengths</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Styles, Matthew J.</creatorcontrib><creatorcontrib>Rodriguez, Rebeca S.</creatorcontrib><creatorcontrib>Szlag, Victoria M.</creatorcontrib><creatorcontrib>Bryson, Samuel</creatorcontrib><creatorcontrib>Gao, Zhe</creatorcontrib><creatorcontrib>Jung, Seyoung</creatorcontrib><creatorcontrib>Reineke, Theresa M.</creatorcontrib><creatorcontrib>Haynes, Christy L.</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Journal of Raman spectroscopy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Styles, Matthew J.</au><au>Rodriguez, Rebeca S.</au><au>Szlag, Victoria M.</au><au>Bryson, Samuel</au><au>Gao, Zhe</au><au>Jung, Seyoung</au><au>Reineke, Theresa M.</au><au>Haynes, Christy L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization of film over nanosphere substrate fabrication for SERS sensing of the allergen soybean agglutinin</atitle><jtitle>Journal of Raman spectroscopy</jtitle><date>2021-02</date><risdate>2021</risdate><volume>52</volume><issue>2</issue><spage>482</spage><epage>490</epage><pages>482-490</pages><issn>0377-0486</issn><eissn>1097-4555</eissn><abstract>Metal film over nanosphere (FON) substrates are a mainstay of surface‐enhanced Raman scattering (SERS) measurements because they are inexpensive to fabricate, have predictable enhancement factors, and are relatively robust. This work includes a systematic investigation of how the three major FON fabrication parameters—nanosphere size, deposited metal thickness, and metal choice—impact the resulting localized surface plasmon resonance (LSPR). With these three parameters, it is quite simple to fabricate FONs with an optimal LSPR for SERS experiments with various excitation wavelengths. Some SERS experiments require that the substrates be incubated in organic solvents that have the potential to damage the substrate; as such, this work also explores how solvent incubation impacts the physical and optical properties of the FON substrate. Although no significant increase in physical damage is obvious, the LSPR does shift significantly. Finally, these optimized FONs were employed for the sensing of an important allergen, soybean agglutinin. The FONs were modified with a glycopolymer that has affinity for soybean agglutinin and clear Raman bands demonstrate detection of 10 μg/ml soybean agglutinin. Overall, this work serves the dual purpose of both sharing critical details about FON design and demonstrating detection of an important lectin analyte.
This work studies the optimization of metal film over nanosphere SERS substrates for biosensing applications. The noble metal used, size of packed spheres, and solvent stability all play a role in optimizing these substrates. Herein, we focus on sensing a soybean agglutinin protein with a linear glycopolymer attached at the substrate surface and monitor binding via SERS.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/jrs.6019</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-8994-554X</orcidid><orcidid>https://orcid.org/0000-0002-5420-5867</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0377-0486 |
ispartof | Journal of Raman spectroscopy, 2021-02, Vol.52 (2), p.482-490 |
issn | 0377-0486 1097-4555 |
language | eng |
recordid | cdi_proquest_journals_2488767609 |
source | Wiley Online Library All Journals |
subjects | allergen Allergens biosensing Damage Fabrication FON Glycopolymers Nanospheres Optical properties Optimization Organic solvents Parameters Raman spectra SERS Solvents Soybeans stability Substrates Surface plasmon resonance Wavelengths |
title | Optimization of film over nanosphere substrate fabrication for SERS sensing of the allergen soybean agglutinin |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T20%3A59%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20of%20film%20over%20nanosphere%20substrate%20fabrication%20for%20SERS%20sensing%20of%20the%20allergen%20soybean%20agglutinin&rft.jtitle=Journal%20of%20Raman%20spectroscopy&rft.au=Styles,%20Matthew%20J.&rft.date=2021-02&rft.volume=52&rft.issue=2&rft.spage=482&rft.epage=490&rft.pages=482-490&rft.issn=0377-0486&rft.eissn=1097-4555&rft_id=info:doi/10.1002/jrs.6019&rft_dat=%3Cproquest_cross%3E2488767609%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2488767609&rft_id=info:pmid/&rfr_iscdi=true |