Building Footprint Extraction From Unmanned Aerial Vehicle Images Via PRU-Net: Application to Change Detection
As the manual detection of building footprint is inefficient and labor-intensive, this study proposed a method of building footprint extraction and change detection based on deep convolutional neural networks. The study modified the existing U-Net model to develop the "PRU-Net" model. PRU-...
Gespeichert in:
Veröffentlicht in: | IEEE journal of selected topics in applied earth observations and remote sensing 2021, Vol.14, p.2236-2248 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2248 |
---|---|
container_issue | |
container_start_page | 2236 |
container_title | IEEE journal of selected topics in applied earth observations and remote sensing |
container_volume | 14 |
creator | Liu, Wei Xu, Jiawei Guo, Zihui Li, Erzhu Li, Xing Zhang, Lianpeng Liu, Wensong |
description | As the manual detection of building footprint is inefficient and labor-intensive, this study proposed a method of building footprint extraction and change detection based on deep convolutional neural networks. The study modified the existing U-Net model to develop the "PRU-Net" model. PRU-Net incorporates pyramid scene parsing (PSP) to allow multiscale scene parsing, a residual block (RB) in ResNet for feature extraction, and focal loss to address sample imbalance. Within the proposed method, building footprint extraction is conducted as follows: 1) unmanned aerial vehicle images are cropped, denoised, and semantically marked, and datasets are created (including training/validation and prediction datasets); 2) the training/validation and prediction datasets are input into the full convolutional neural network PRU-Net for model training/validation and prediction. Compared with the U-Net, PSP+U-Net (PU-Net), and U-Net++ models, PRU-Net offers improved footprint extraction of buildings with a range of sizes and shapes. The large-scale experimental results demonstrated the effectiveness of the PSP module for multiscale scene analysis and the RB module for feature extraction. After demonstrating the improvements in building extraction offered by PRU-Net, the building footprint results were further processed to generate a building change map. |
doi_str_mv | 10.1109/JSTARS.2021.3052495 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2488745839</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9327466</ieee_id><doaj_id>oai_doaj_org_article_31be86322b0a482e8fd814e19e7eadf4</doaj_id><sourcerecordid>2488745839</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-26aca8f727c96eb05ba67a0c4d61ba9e0b9e54d5bcccf40064027893c168c463</originalsourceid><addsrcrecordid>eNo9kc1u2zAQhIWgBeqmfYJcCPQsl_8ic3PdOHURtEXi5EqsqJVDQxZdigaat69sBTktsJhvdgdTFFeMzhmj9uvPh83i_mHOKWdzQRWXVl0UM84UK5kS6l0xY1bYkkkqPxQfh2FHqeaVFbOi_3YMXRP6LVnFmA8p9Jnc_MsJfA6xJ6sU9-Sx30PfY0MWmAJ05Amfg--QrPewxYE8BSB_7h_LX5ivyeJw6IKHM5wjWT5Dv0XyHTOeDT8V71voBvz8Oi-Lzepms_xR3v2-XS8Xd6WX1OSSa_Bg2opX3mqsqapBV0C9bDSrwSKtLSrZqNp738oxjKS8MlZ4po2XWlwW68m2ibBzY6o9pBcXIbjzIqatg5RPIZxgNRotOK8pSMPRtI1hEpnFCqFp5ej1ZfI6pPj3iEN2u3hM_fi949KYSioj7KgSk8qnOAwJ27erjLpTR27qyJ06cq8djdTVRAVEfCOs4JXUWvwHr0CNrg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2488745839</pqid></control><display><type>article</type><title>Building Footprint Extraction From Unmanned Aerial Vehicle Images Via PRU-Net: Application to Change Detection</title><source>Directory of Open Access Journals</source><source>EZB Electronic Journals Library</source><creator>Liu, Wei ; Xu, Jiawei ; Guo, Zihui ; Li, Erzhu ; Li, Xing ; Zhang, Lianpeng ; Liu, Wensong</creator><creatorcontrib>Liu, Wei ; Xu, Jiawei ; Guo, Zihui ; Li, Erzhu ; Li, Xing ; Zhang, Lianpeng ; Liu, Wensong</creatorcontrib><description>As the manual detection of building footprint is inefficient and labor-intensive, this study proposed a method of building footprint extraction and change detection based on deep convolutional neural networks. The study modified the existing U-Net model to develop the "PRU-Net" model. PRU-Net incorporates pyramid scene parsing (PSP) to allow multiscale scene parsing, a residual block (RB) in ResNet for feature extraction, and focal loss to address sample imbalance. Within the proposed method, building footprint extraction is conducted as follows: 1) unmanned aerial vehicle images are cropped, denoised, and semantically marked, and datasets are created (including training/validation and prediction datasets); 2) the training/validation and prediction datasets are input into the full convolutional neural network PRU-Net for model training/validation and prediction. Compared with the U-Net, PSP+U-Net (PU-Net), and U-Net++ models, PRU-Net offers improved footprint extraction of buildings with a range of sizes and shapes. The large-scale experimental results demonstrated the effectiveness of the PSP module for multiscale scene analysis and the RB module for feature extraction. After demonstrating the improvements in building extraction offered by PRU-Net, the building footprint results were further processed to generate a building change map.</description><identifier>ISSN: 1939-1404</identifier><identifier>EISSN: 2151-1535</identifier><identifier>DOI: 10.1109/JSTARS.2021.3052495</identifier><identifier>CODEN: IJSTHZ</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Artificial neural networks ; Building footprint change detection ; Buildings ; Change detection ; Data mining ; Datasets ; deep convolutional neural network (DCNN) ; Detection ; Feature extraction ; Image segmentation ; Labour ; Licenses ; Modules ; Neural networks ; Noise reduction ; Predictions ; Predictive models ; Scene analysis ; Semantics ; Training ; U-Net ; unmanned aerial vehicle (UAV) image ; Unmanned aerial vehicles</subject><ispartof>IEEE journal of selected topics in applied earth observations and remote sensing, 2021, Vol.14, p.2236-2248</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-26aca8f727c96eb05ba67a0c4d61ba9e0b9e54d5bcccf40064027893c168c463</citedby><cites>FETCH-LOGICAL-c408t-26aca8f727c96eb05ba67a0c4d61ba9e0b9e54d5bcccf40064027893c168c463</cites><orcidid>0000-0001-8808-7961</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,2102,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>Liu, Wei</creatorcontrib><creatorcontrib>Xu, Jiawei</creatorcontrib><creatorcontrib>Guo, Zihui</creatorcontrib><creatorcontrib>Li, Erzhu</creatorcontrib><creatorcontrib>Li, Xing</creatorcontrib><creatorcontrib>Zhang, Lianpeng</creatorcontrib><creatorcontrib>Liu, Wensong</creatorcontrib><title>Building Footprint Extraction From Unmanned Aerial Vehicle Images Via PRU-Net: Application to Change Detection</title><title>IEEE journal of selected topics in applied earth observations and remote sensing</title><addtitle>JSTARS</addtitle><description>As the manual detection of building footprint is inefficient and labor-intensive, this study proposed a method of building footprint extraction and change detection based on deep convolutional neural networks. The study modified the existing U-Net model to develop the "PRU-Net" model. PRU-Net incorporates pyramid scene parsing (PSP) to allow multiscale scene parsing, a residual block (RB) in ResNet for feature extraction, and focal loss to address sample imbalance. Within the proposed method, building footprint extraction is conducted as follows: 1) unmanned aerial vehicle images are cropped, denoised, and semantically marked, and datasets are created (including training/validation and prediction datasets); 2) the training/validation and prediction datasets are input into the full convolutional neural network PRU-Net for model training/validation and prediction. Compared with the U-Net, PSP+U-Net (PU-Net), and U-Net++ models, PRU-Net offers improved footprint extraction of buildings with a range of sizes and shapes. The large-scale experimental results demonstrated the effectiveness of the PSP module for multiscale scene analysis and the RB module for feature extraction. After demonstrating the improvements in building extraction offered by PRU-Net, the building footprint results were further processed to generate a building change map.</description><subject>Artificial neural networks</subject><subject>Building footprint change detection</subject><subject>Buildings</subject><subject>Change detection</subject><subject>Data mining</subject><subject>Datasets</subject><subject>deep convolutional neural network (DCNN)</subject><subject>Detection</subject><subject>Feature extraction</subject><subject>Image segmentation</subject><subject>Labour</subject><subject>Licenses</subject><subject>Modules</subject><subject>Neural networks</subject><subject>Noise reduction</subject><subject>Predictions</subject><subject>Predictive models</subject><subject>Scene analysis</subject><subject>Semantics</subject><subject>Training</subject><subject>U-Net</subject><subject>unmanned aerial vehicle (UAV) image</subject><subject>Unmanned aerial vehicles</subject><issn>1939-1404</issn><issn>2151-1535</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNo9kc1u2zAQhIWgBeqmfYJcCPQsl_8ic3PdOHURtEXi5EqsqJVDQxZdigaat69sBTktsJhvdgdTFFeMzhmj9uvPh83i_mHOKWdzQRWXVl0UM84UK5kS6l0xY1bYkkkqPxQfh2FHqeaVFbOi_3YMXRP6LVnFmA8p9Jnc_MsJfA6xJ6sU9-Sx30PfY0MWmAJ05Amfg--QrPewxYE8BSB_7h_LX5ivyeJw6IKHM5wjWT5Dv0XyHTOeDT8V71voBvz8Oi-Lzepms_xR3v2-XS8Xd6WX1OSSa_Bg2opX3mqsqapBV0C9bDSrwSKtLSrZqNp738oxjKS8MlZ4po2XWlwW68m2ibBzY6o9pBcXIbjzIqatg5RPIZxgNRotOK8pSMPRtI1hEpnFCqFp5ej1ZfI6pPj3iEN2u3hM_fi949KYSioj7KgSk8qnOAwJ27erjLpTR27qyJ06cq8djdTVRAVEfCOs4JXUWvwHr0CNrg</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Liu, Wei</creator><creator>Xu, Jiawei</creator><creator>Guo, Zihui</creator><creator>Li, Erzhu</creator><creator>Li, Xing</creator><creator>Zhang, Lianpeng</creator><creator>Liu, Wensong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8808-7961</orcidid></search><sort><creationdate>2021</creationdate><title>Building Footprint Extraction From Unmanned Aerial Vehicle Images Via PRU-Net: Application to Change Detection</title><author>Liu, Wei ; Xu, Jiawei ; Guo, Zihui ; Li, Erzhu ; Li, Xing ; Zhang, Lianpeng ; Liu, Wensong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-26aca8f727c96eb05ba67a0c4d61ba9e0b9e54d5bcccf40064027893c168c463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial neural networks</topic><topic>Building footprint change detection</topic><topic>Buildings</topic><topic>Change detection</topic><topic>Data mining</topic><topic>Datasets</topic><topic>deep convolutional neural network (DCNN)</topic><topic>Detection</topic><topic>Feature extraction</topic><topic>Image segmentation</topic><topic>Labour</topic><topic>Licenses</topic><topic>Modules</topic><topic>Neural networks</topic><topic>Noise reduction</topic><topic>Predictions</topic><topic>Predictive models</topic><topic>Scene analysis</topic><topic>Semantics</topic><topic>Training</topic><topic>U-Net</topic><topic>unmanned aerial vehicle (UAV) image</topic><topic>Unmanned aerial vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Wei</creatorcontrib><creatorcontrib>Xu, Jiawei</creatorcontrib><creatorcontrib>Guo, Zihui</creatorcontrib><creatorcontrib>Li, Erzhu</creatorcontrib><creatorcontrib>Li, Xing</creatorcontrib><creatorcontrib>Zhang, Lianpeng</creatorcontrib><creatorcontrib>Liu, Wensong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Directory of Open Access Journals</collection><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Wei</au><au>Xu, Jiawei</au><au>Guo, Zihui</au><au>Li, Erzhu</au><au>Li, Xing</au><au>Zhang, Lianpeng</au><au>Liu, Wensong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Building Footprint Extraction From Unmanned Aerial Vehicle Images Via PRU-Net: Application to Change Detection</atitle><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle><stitle>JSTARS</stitle><date>2021</date><risdate>2021</risdate><volume>14</volume><spage>2236</spage><epage>2248</epage><pages>2236-2248</pages><issn>1939-1404</issn><eissn>2151-1535</eissn><coden>IJSTHZ</coden><abstract>As the manual detection of building footprint is inefficient and labor-intensive, this study proposed a method of building footprint extraction and change detection based on deep convolutional neural networks. The study modified the existing U-Net model to develop the "PRU-Net" model. PRU-Net incorporates pyramid scene parsing (PSP) to allow multiscale scene parsing, a residual block (RB) in ResNet for feature extraction, and focal loss to address sample imbalance. Within the proposed method, building footprint extraction is conducted as follows: 1) unmanned aerial vehicle images are cropped, denoised, and semantically marked, and datasets are created (including training/validation and prediction datasets); 2) the training/validation and prediction datasets are input into the full convolutional neural network PRU-Net for model training/validation and prediction. Compared with the U-Net, PSP+U-Net (PU-Net), and U-Net++ models, PRU-Net offers improved footprint extraction of buildings with a range of sizes and shapes. The large-scale experimental results demonstrated the effectiveness of the PSP module for multiscale scene analysis and the RB module for feature extraction. After demonstrating the improvements in building extraction offered by PRU-Net, the building footprint results were further processed to generate a building change map.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JSTARS.2021.3052495</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-8808-7961</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1939-1404 |
ispartof | IEEE journal of selected topics in applied earth observations and remote sensing, 2021, Vol.14, p.2236-2248 |
issn | 1939-1404 2151-1535 |
language | eng |
recordid | cdi_proquest_journals_2488745839 |
source | Directory of Open Access Journals; EZB Electronic Journals Library |
subjects | Artificial neural networks Building footprint change detection Buildings Change detection Data mining Datasets deep convolutional neural network (DCNN) Detection Feature extraction Image segmentation Labour Licenses Modules Neural networks Noise reduction Predictions Predictive models Scene analysis Semantics Training U-Net unmanned aerial vehicle (UAV) image Unmanned aerial vehicles |
title | Building Footprint Extraction From Unmanned Aerial Vehicle Images Via PRU-Net: Application to Change Detection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T21%3A48%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Building%20Footprint%20Extraction%20From%20Unmanned%20Aerial%20Vehicle%20Images%20Via%20PRU-Net:%20Application%20to%20Change%20Detection&rft.jtitle=IEEE%20journal%20of%20selected%20topics%20in%20applied%20earth%20observations%20and%20remote%20sensing&rft.au=Liu,%20Wei&rft.date=2021&rft.volume=14&rft.spage=2236&rft.epage=2248&rft.pages=2236-2248&rft.issn=1939-1404&rft.eissn=2151-1535&rft.coden=IJSTHZ&rft_id=info:doi/10.1109/JSTARS.2021.3052495&rft_dat=%3Cproquest_cross%3E2488745839%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2488745839&rft_id=info:pmid/&rft_ieee_id=9327466&rft_doaj_id=oai_doaj_org_article_31be86322b0a482e8fd814e19e7eadf4&rfr_iscdi=true |