Differential phase encoded measurement-device-independent quantum key distribution
We present a measurement-device-independent quantum key distribution (MDI-QKD) using single photons in a linear superposition of three orthogonal time-bin states, for generating the key. The orthogonal states correspond to three distinct paths in the delay line interferometers used by two (trusted)...
Gespeichert in:
Veröffentlicht in: | Quantum information processing 2021-02, Vol.20 (2), Article 67 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | |
container_title | Quantum information processing |
container_volume | 20 |
creator | Ranu, Shashank Kumar Prabhakar, Anil Mandayam, Prabha |
description | We present a measurement-device-independent quantum key distribution (MDI-QKD) using single photons in a linear superposition of three orthogonal
time-bin
states, for generating the key. The orthogonal states correspond to three distinct paths in the delay line interferometers used by two (trusted) sources. The key information is decoded based on the measurement outcomes obtained by an untrusted third party Charles, who uses a beamsplitter to measure the phase difference between pulses traveling through different paths of the two delay lines. The proposed scheme combines the best of both differential-phase-shift (DPS) QKD and MDI-QKD. It is more robust against phase fluctuations, and also ensures protection against detector side-channel attacks. We prove unconditional security by demonstrating an equivalent protocol involving shared entanglement between the two trusted parties. We show that the secure key rate for our protocol compares well to existing protocols in the asymptotic regime. For the decoy-state variant of our protocol, we evaluate the secure key rate by using a phase-post-selection technique. Finally, we estimate the bit error rate and the phase error rate, in the finite key regime. |
doi_str_mv | 10.1007/s11128-021-03006-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2488692804</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2488692804</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-8826a5c09878a65a373a8f4ee685909311349515b58ccdad4064eb439b058fe13</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AU8Fz9FJ0qTpUdZPEATRc0jbqWbdpt2kFfbfG7eCNy8zA_O8M_AQcs7gkgEUV5ExxjUFzigIAEX5AVkwWQjKhOCH-xkoFFIek5MY15BIpdWCvNy4tsWAfnR2kw0fNmKGvu4bbLIObZwCdmlJG_xyNVLnGxwwFT9m28n6ceqyT9xljYtjcNU0ut6fkqPWbiKe_fYlebu7fV090Kfn-8fV9ROtBStHqjVXVtZQ6kJbJa0ohNVtjqi0LKEUjIm8lExWUtd1Y5scVI5VLsoKpG6RiSW5mO8Ood9OGEez7qfg00vDc61VyTXkieIzVYc-xoCtGYLrbNgZBubHnZndmWTE7N0ZnkJiDsUE-3cMf6f_SX0Dm4lxyA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2488692804</pqid></control><display><type>article</type><title>Differential phase encoded measurement-device-independent quantum key distribution</title><source>SpringerLink Journals - AutoHoldings</source><creator>Ranu, Shashank Kumar ; Prabhakar, Anil ; Mandayam, Prabha</creator><creatorcontrib>Ranu, Shashank Kumar ; Prabhakar, Anil ; Mandayam, Prabha</creatorcontrib><description>We present a measurement-device-independent quantum key distribution (MDI-QKD) using single photons in a linear superposition of three orthogonal
time-bin
states, for generating the key. The orthogonal states correspond to three distinct paths in the delay line interferometers used by two (trusted) sources. The key information is decoded based on the measurement outcomes obtained by an untrusted third party Charles, who uses a beamsplitter to measure the phase difference between pulses traveling through different paths of the two delay lines. The proposed scheme combines the best of both differential-phase-shift (DPS) QKD and MDI-QKD. It is more robust against phase fluctuations, and also ensures protection against detector side-channel attacks. We prove unconditional security by demonstrating an equivalent protocol involving shared entanglement between the two trusted parties. We show that the secure key rate for our protocol compares well to existing protocols in the asymptotic regime. For the decoy-state variant of our protocol, we evaluate the secure key rate by using a phase-post-selection technique. Finally, we estimate the bit error rate and the phase error rate, in the finite key regime.</description><identifier>ISSN: 1570-0755</identifier><identifier>EISSN: 1573-1332</identifier><identifier>DOI: 10.1007/s11128-021-03006-2</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Bit error rate ; Data Structures and Information Theory ; Delay lines ; Mathematical Physics ; Phase error ; Physics ; Physics and Astronomy ; Protocol ; Quantum Computing ; Quantum cryptography ; Quantum entanglement ; Quantum Information Technology ; Quantum Physics ; Spintronics</subject><ispartof>Quantum information processing, 2021-02, Vol.20 (2), Article 67</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-8826a5c09878a65a373a8f4ee685909311349515b58ccdad4064eb439b058fe13</citedby><cites>FETCH-LOGICAL-c319t-8826a5c09878a65a373a8f4ee685909311349515b58ccdad4064eb439b058fe13</cites><orcidid>0000-0002-5713-0346</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11128-021-03006-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11128-021-03006-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Ranu, Shashank Kumar</creatorcontrib><creatorcontrib>Prabhakar, Anil</creatorcontrib><creatorcontrib>Mandayam, Prabha</creatorcontrib><title>Differential phase encoded measurement-device-independent quantum key distribution</title><title>Quantum information processing</title><addtitle>Quantum Inf Process</addtitle><description>We present a measurement-device-independent quantum key distribution (MDI-QKD) using single photons in a linear superposition of three orthogonal
time-bin
states, for generating the key. The orthogonal states correspond to three distinct paths in the delay line interferometers used by two (trusted) sources. The key information is decoded based on the measurement outcomes obtained by an untrusted third party Charles, who uses a beamsplitter to measure the phase difference between pulses traveling through different paths of the two delay lines. The proposed scheme combines the best of both differential-phase-shift (DPS) QKD and MDI-QKD. It is more robust against phase fluctuations, and also ensures protection against detector side-channel attacks. We prove unconditional security by demonstrating an equivalent protocol involving shared entanglement between the two trusted parties. We show that the secure key rate for our protocol compares well to existing protocols in the asymptotic regime. For the decoy-state variant of our protocol, we evaluate the secure key rate by using a phase-post-selection technique. Finally, we estimate the bit error rate and the phase error rate, in the finite key regime.</description><subject>Bit error rate</subject><subject>Data Structures and Information Theory</subject><subject>Delay lines</subject><subject>Mathematical Physics</subject><subject>Phase error</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Protocol</subject><subject>Quantum Computing</subject><subject>Quantum cryptography</subject><subject>Quantum entanglement</subject><subject>Quantum Information Technology</subject><subject>Quantum Physics</subject><subject>Spintronics</subject><issn>1570-0755</issn><issn>1573-1332</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-AU8Fz9FJ0qTpUdZPEATRc0jbqWbdpt2kFfbfG7eCNy8zA_O8M_AQcs7gkgEUV5ExxjUFzigIAEX5AVkwWQjKhOCH-xkoFFIek5MY15BIpdWCvNy4tsWAfnR2kw0fNmKGvu4bbLIObZwCdmlJG_xyNVLnGxwwFT9m28n6ceqyT9xljYtjcNU0ut6fkqPWbiKe_fYlebu7fV090Kfn-8fV9ROtBStHqjVXVtZQ6kJbJa0ohNVtjqi0LKEUjIm8lExWUtd1Y5scVI5VLsoKpG6RiSW5mO8Ood9OGEez7qfg00vDc61VyTXkieIzVYc-xoCtGYLrbNgZBubHnZndmWTE7N0ZnkJiDsUE-3cMf6f_SX0Dm4lxyA</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Ranu, Shashank Kumar</creator><creator>Prabhakar, Anil</creator><creator>Mandayam, Prabha</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-5713-0346</orcidid></search><sort><creationdate>20210201</creationdate><title>Differential phase encoded measurement-device-independent quantum key distribution</title><author>Ranu, Shashank Kumar ; Prabhakar, Anil ; Mandayam, Prabha</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-8826a5c09878a65a373a8f4ee685909311349515b58ccdad4064eb439b058fe13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Bit error rate</topic><topic>Data Structures and Information Theory</topic><topic>Delay lines</topic><topic>Mathematical Physics</topic><topic>Phase error</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Protocol</topic><topic>Quantum Computing</topic><topic>Quantum cryptography</topic><topic>Quantum entanglement</topic><topic>Quantum Information Technology</topic><topic>Quantum Physics</topic><topic>Spintronics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ranu, Shashank Kumar</creatorcontrib><creatorcontrib>Prabhakar, Anil</creatorcontrib><creatorcontrib>Mandayam, Prabha</creatorcontrib><collection>CrossRef</collection><jtitle>Quantum information processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ranu, Shashank Kumar</au><au>Prabhakar, Anil</au><au>Mandayam, Prabha</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Differential phase encoded measurement-device-independent quantum key distribution</atitle><jtitle>Quantum information processing</jtitle><stitle>Quantum Inf Process</stitle><date>2021-02-01</date><risdate>2021</risdate><volume>20</volume><issue>2</issue><artnum>67</artnum><issn>1570-0755</issn><eissn>1573-1332</eissn><abstract>We present a measurement-device-independent quantum key distribution (MDI-QKD) using single photons in a linear superposition of three orthogonal
time-bin
states, for generating the key. The orthogonal states correspond to three distinct paths in the delay line interferometers used by two (trusted) sources. The key information is decoded based on the measurement outcomes obtained by an untrusted third party Charles, who uses a beamsplitter to measure the phase difference between pulses traveling through different paths of the two delay lines. The proposed scheme combines the best of both differential-phase-shift (DPS) QKD and MDI-QKD. It is more robust against phase fluctuations, and also ensures protection against detector side-channel attacks. We prove unconditional security by demonstrating an equivalent protocol involving shared entanglement between the two trusted parties. We show that the secure key rate for our protocol compares well to existing protocols in the asymptotic regime. For the decoy-state variant of our protocol, we evaluate the secure key rate by using a phase-post-selection technique. Finally, we estimate the bit error rate and the phase error rate, in the finite key regime.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11128-021-03006-2</doi><orcidid>https://orcid.org/0000-0002-5713-0346</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1570-0755 |
ispartof | Quantum information processing, 2021-02, Vol.20 (2), Article 67 |
issn | 1570-0755 1573-1332 |
language | eng |
recordid | cdi_proquest_journals_2488692804 |
source | SpringerLink Journals - AutoHoldings |
subjects | Bit error rate Data Structures and Information Theory Delay lines Mathematical Physics Phase error Physics Physics and Astronomy Protocol Quantum Computing Quantum cryptography Quantum entanglement Quantum Information Technology Quantum Physics Spintronics |
title | Differential phase encoded measurement-device-independent quantum key distribution |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T01%3A38%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Differential%20phase%20encoded%20measurement-device-independent%20quantum%20key%20distribution&rft.jtitle=Quantum%20information%20processing&rft.au=Ranu,%20Shashank%20Kumar&rft.date=2021-02-01&rft.volume=20&rft.issue=2&rft.artnum=67&rft.issn=1570-0755&rft.eissn=1573-1332&rft_id=info:doi/10.1007/s11128-021-03006-2&rft_dat=%3Cproquest_cross%3E2488692804%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2488692804&rft_id=info:pmid/&rfr_iscdi=true |