Differential phase encoded measurement-device-independent quantum key distribution

We present a measurement-device-independent quantum key distribution (MDI-QKD) using single photons in a linear superposition of three orthogonal time-bin states, for generating the key. The orthogonal states correspond to three distinct paths in the delay line interferometers used by two (trusted)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Quantum information processing 2021-02, Vol.20 (2), Article 67
Hauptverfasser: Ranu, Shashank Kumar, Prabhakar, Anil, Mandayam, Prabha
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page
container_title Quantum information processing
container_volume 20
creator Ranu, Shashank Kumar
Prabhakar, Anil
Mandayam, Prabha
description We present a measurement-device-independent quantum key distribution (MDI-QKD) using single photons in a linear superposition of three orthogonal time-bin states, for generating the key. The orthogonal states correspond to three distinct paths in the delay line interferometers used by two (trusted) sources. The key information is decoded based on the measurement outcomes obtained by an untrusted third party Charles, who uses a beamsplitter to measure the phase difference between pulses traveling through different paths of the two delay lines. The proposed scheme combines the best of both differential-phase-shift (DPS) QKD and MDI-QKD. It is more robust against phase fluctuations, and also ensures protection against detector side-channel attacks. We prove unconditional security by demonstrating an equivalent protocol involving shared entanglement between the two trusted parties. We show that the secure key rate for our protocol compares well to existing protocols in the asymptotic regime. For the decoy-state variant of our protocol, we evaluate the secure key rate by using a phase-post-selection technique. Finally, we estimate the bit error rate and the phase error rate, in the finite key regime.
doi_str_mv 10.1007/s11128-021-03006-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2488692804</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2488692804</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-8826a5c09878a65a373a8f4ee685909311349515b58ccdad4064eb439b058fe13</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AU8Fz9FJ0qTpUdZPEATRc0jbqWbdpt2kFfbfG7eCNy8zA_O8M_AQcs7gkgEUV5ExxjUFzigIAEX5AVkwWQjKhOCH-xkoFFIek5MY15BIpdWCvNy4tsWAfnR2kw0fNmKGvu4bbLIObZwCdmlJG_xyNVLnGxwwFT9m28n6ceqyT9xljYtjcNU0ut6fkqPWbiKe_fYlebu7fV090Kfn-8fV9ROtBStHqjVXVtZQ6kJbJa0ohNVtjqi0LKEUjIm8lExWUtd1Y5scVI5VLsoKpG6RiSW5mO8Ood9OGEez7qfg00vDc61VyTXkieIzVYc-xoCtGYLrbNgZBubHnZndmWTE7N0ZnkJiDsUE-3cMf6f_SX0Dm4lxyA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2488692804</pqid></control><display><type>article</type><title>Differential phase encoded measurement-device-independent quantum key distribution</title><source>SpringerLink Journals - AutoHoldings</source><creator>Ranu, Shashank Kumar ; Prabhakar, Anil ; Mandayam, Prabha</creator><creatorcontrib>Ranu, Shashank Kumar ; Prabhakar, Anil ; Mandayam, Prabha</creatorcontrib><description>We present a measurement-device-independent quantum key distribution (MDI-QKD) using single photons in a linear superposition of three orthogonal time-bin states, for generating the key. The orthogonal states correspond to three distinct paths in the delay line interferometers used by two (trusted) sources. The key information is decoded based on the measurement outcomes obtained by an untrusted third party Charles, who uses a beamsplitter to measure the phase difference between pulses traveling through different paths of the two delay lines. The proposed scheme combines the best of both differential-phase-shift (DPS) QKD and MDI-QKD. It is more robust against phase fluctuations, and also ensures protection against detector side-channel attacks. We prove unconditional security by demonstrating an equivalent protocol involving shared entanglement between the two trusted parties. We show that the secure key rate for our protocol compares well to existing protocols in the asymptotic regime. For the decoy-state variant of our protocol, we evaluate the secure key rate by using a phase-post-selection technique. Finally, we estimate the bit error rate and the phase error rate, in the finite key regime.</description><identifier>ISSN: 1570-0755</identifier><identifier>EISSN: 1573-1332</identifier><identifier>DOI: 10.1007/s11128-021-03006-2</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Bit error rate ; Data Structures and Information Theory ; Delay lines ; Mathematical Physics ; Phase error ; Physics ; Physics and Astronomy ; Protocol ; Quantum Computing ; Quantum cryptography ; Quantum entanglement ; Quantum Information Technology ; Quantum Physics ; Spintronics</subject><ispartof>Quantum information processing, 2021-02, Vol.20 (2), Article 67</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-8826a5c09878a65a373a8f4ee685909311349515b58ccdad4064eb439b058fe13</citedby><cites>FETCH-LOGICAL-c319t-8826a5c09878a65a373a8f4ee685909311349515b58ccdad4064eb439b058fe13</cites><orcidid>0000-0002-5713-0346</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11128-021-03006-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11128-021-03006-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Ranu, Shashank Kumar</creatorcontrib><creatorcontrib>Prabhakar, Anil</creatorcontrib><creatorcontrib>Mandayam, Prabha</creatorcontrib><title>Differential phase encoded measurement-device-independent quantum key distribution</title><title>Quantum information processing</title><addtitle>Quantum Inf Process</addtitle><description>We present a measurement-device-independent quantum key distribution (MDI-QKD) using single photons in a linear superposition of three orthogonal time-bin states, for generating the key. The orthogonal states correspond to three distinct paths in the delay line interferometers used by two (trusted) sources. The key information is decoded based on the measurement outcomes obtained by an untrusted third party Charles, who uses a beamsplitter to measure the phase difference between pulses traveling through different paths of the two delay lines. The proposed scheme combines the best of both differential-phase-shift (DPS) QKD and MDI-QKD. It is more robust against phase fluctuations, and also ensures protection against detector side-channel attacks. We prove unconditional security by demonstrating an equivalent protocol involving shared entanglement between the two trusted parties. We show that the secure key rate for our protocol compares well to existing protocols in the asymptotic regime. For the decoy-state variant of our protocol, we evaluate the secure key rate by using a phase-post-selection technique. Finally, we estimate the bit error rate and the phase error rate, in the finite key regime.</description><subject>Bit error rate</subject><subject>Data Structures and Information Theory</subject><subject>Delay lines</subject><subject>Mathematical Physics</subject><subject>Phase error</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Protocol</subject><subject>Quantum Computing</subject><subject>Quantum cryptography</subject><subject>Quantum entanglement</subject><subject>Quantum Information Technology</subject><subject>Quantum Physics</subject><subject>Spintronics</subject><issn>1570-0755</issn><issn>1573-1332</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-AU8Fz9FJ0qTpUdZPEATRc0jbqWbdpt2kFfbfG7eCNy8zA_O8M_AQcs7gkgEUV5ExxjUFzigIAEX5AVkwWQjKhOCH-xkoFFIek5MY15BIpdWCvNy4tsWAfnR2kw0fNmKGvu4bbLIObZwCdmlJG_xyNVLnGxwwFT9m28n6ceqyT9xljYtjcNU0ut6fkqPWbiKe_fYlebu7fV090Kfn-8fV9ROtBStHqjVXVtZQ6kJbJa0ohNVtjqi0LKEUjIm8lExWUtd1Y5scVI5VLsoKpG6RiSW5mO8Ood9OGEez7qfg00vDc61VyTXkieIzVYc-xoCtGYLrbNgZBubHnZndmWTE7N0ZnkJiDsUE-3cMf6f_SX0Dm4lxyA</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Ranu, Shashank Kumar</creator><creator>Prabhakar, Anil</creator><creator>Mandayam, Prabha</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-5713-0346</orcidid></search><sort><creationdate>20210201</creationdate><title>Differential phase encoded measurement-device-independent quantum key distribution</title><author>Ranu, Shashank Kumar ; Prabhakar, Anil ; Mandayam, Prabha</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-8826a5c09878a65a373a8f4ee685909311349515b58ccdad4064eb439b058fe13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Bit error rate</topic><topic>Data Structures and Information Theory</topic><topic>Delay lines</topic><topic>Mathematical Physics</topic><topic>Phase error</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Protocol</topic><topic>Quantum Computing</topic><topic>Quantum cryptography</topic><topic>Quantum entanglement</topic><topic>Quantum Information Technology</topic><topic>Quantum Physics</topic><topic>Spintronics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ranu, Shashank Kumar</creatorcontrib><creatorcontrib>Prabhakar, Anil</creatorcontrib><creatorcontrib>Mandayam, Prabha</creatorcontrib><collection>CrossRef</collection><jtitle>Quantum information processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ranu, Shashank Kumar</au><au>Prabhakar, Anil</au><au>Mandayam, Prabha</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Differential phase encoded measurement-device-independent quantum key distribution</atitle><jtitle>Quantum information processing</jtitle><stitle>Quantum Inf Process</stitle><date>2021-02-01</date><risdate>2021</risdate><volume>20</volume><issue>2</issue><artnum>67</artnum><issn>1570-0755</issn><eissn>1573-1332</eissn><abstract>We present a measurement-device-independent quantum key distribution (MDI-QKD) using single photons in a linear superposition of three orthogonal time-bin states, for generating the key. The orthogonal states correspond to three distinct paths in the delay line interferometers used by two (trusted) sources. The key information is decoded based on the measurement outcomes obtained by an untrusted third party Charles, who uses a beamsplitter to measure the phase difference between pulses traveling through different paths of the two delay lines. The proposed scheme combines the best of both differential-phase-shift (DPS) QKD and MDI-QKD. It is more robust against phase fluctuations, and also ensures protection against detector side-channel attacks. We prove unconditional security by demonstrating an equivalent protocol involving shared entanglement between the two trusted parties. We show that the secure key rate for our protocol compares well to existing protocols in the asymptotic regime. For the decoy-state variant of our protocol, we evaluate the secure key rate by using a phase-post-selection technique. Finally, we estimate the bit error rate and the phase error rate, in the finite key regime.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11128-021-03006-2</doi><orcidid>https://orcid.org/0000-0002-5713-0346</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1570-0755
ispartof Quantum information processing, 2021-02, Vol.20 (2), Article 67
issn 1570-0755
1573-1332
language eng
recordid cdi_proquest_journals_2488692804
source SpringerLink Journals - AutoHoldings
subjects Bit error rate
Data Structures and Information Theory
Delay lines
Mathematical Physics
Phase error
Physics
Physics and Astronomy
Protocol
Quantum Computing
Quantum cryptography
Quantum entanglement
Quantum Information Technology
Quantum Physics
Spintronics
title Differential phase encoded measurement-device-independent quantum key distribution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T01%3A38%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Differential%20phase%20encoded%20measurement-device-independent%20quantum%20key%20distribution&rft.jtitle=Quantum%20information%20processing&rft.au=Ranu,%20Shashank%20Kumar&rft.date=2021-02-01&rft.volume=20&rft.issue=2&rft.artnum=67&rft.issn=1570-0755&rft.eissn=1573-1332&rft_id=info:doi/10.1007/s11128-021-03006-2&rft_dat=%3Cproquest_cross%3E2488692804%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2488692804&rft_id=info:pmid/&rfr_iscdi=true