Health monitoring of rolling element bearings using improved wavelet cross spectrum technique and support vector machines
An improved wavelet cross spectrum (IWCS) scheme is proposed in this paper for the health monitoring of the rolling element bearings. The parameters under investigation are the axial preload, the lubricant condition and the surface roughness of the contact surfaces. These parameters determine the pe...
Gespeichert in:
Veröffentlicht in: | Tribology international 2021-02, Vol.154, p.106650, Article 106650 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 106650 |
container_title | Tribology international |
container_volume | 154 |
creator | Skariah, Abhilash R, Pradeep R, Rejith R, Bijudas C |
description | An improved wavelet cross spectrum (IWCS) scheme is proposed in this paper for the health monitoring of the rolling element bearings. The parameters under investigation are the axial preload, the lubricant condition and the surface roughness of the contact surfaces. These parameters determine the performance and the life of ball-bearings, especially in the space application which demands low torque noise during the mission life and operating under varying conditions of temperature and speed. The developed method takes the advantages of the wavelet cross spectrum technique for the feature extraction from the non-stationary vibration signatures. The vibration signals of the Rolling Element Bearings (REB) are first analysed by a continuous wavelet transform (CWT) over the selected scales corresponding to the bearing fundamental fault frequencies. Further, cross-correlation is utilised to enhance the defect-related periodic features. In this improved scheme, the contributive bandwidth selection from the Jarque-Bera (JB) statistic index is carried out with the assistance of an outlier technique. This method removes any outliers in the JB index data by using the linear interpolation and thereby enhancing the index value of the other cross-correlated scales. Experiments are conducted to verify the validity of the IWCS and found to be very effective in diagnosing the bearing health conditions. Using the support vector machines (SVM), the classification of the health conditions is obtained based on the novel improved wavelet cross spectrum analysis.
•Deals with the condition monitoring of rolling element bearings.•The wavelet cross-spectrum method for extracting defect related signatures from vibration data is enhanced.•An outlier removing scheme is used in determining the contributing bandwidth selection.•The classification of different health conditions is obtained using support vector machines. |
doi_str_mv | 10.1016/j.triboint.2020.106650 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2488256155</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0301679X20304771</els_id><sourcerecordid>2488256155</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-13525406a23475ded2ca673a6c4e04a498504f88519d414d2441ec5905f90f8c3</originalsourceid><addsrcrecordid>eNqFUE1LxDAQDaLg-vEXJOC5a5ImaXtTFr9gwYuCtxDTqZulTWqSrvjvTV09e5ph5r038x5CF5QsKaHyartMwb5569KSETYPpRTkAC1oXTUF45IfogUpCS1k1bweo5MYt4SQijfVAn09gO7TBg_e2eSDde_Ydzj4vp9b6GEAl_Ab6HkV8RTnsR3G4HfQ4k-9y5CETfAx4jiCSWEacAKzcfZjAqxdi-M0jj4kvMtbH_CgzcY6iGfoqNN9hPPfeope7m6fVw_F-un-cXWzLkzJSSpoKZjgRGpW8kq00DKjZVVqaTgQrnlTC8K7uha0aTnlLeOcghENEV1DutqUp-hyr5t_zi_FpLZ-Ci6fVIzXNROSCpFRco_6sRKgU2Owgw5fihI1x6y26i9mNces9jFn4vWeCNnDzkJQ0VhwBlobsmHVevufxDckCovp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2488256155</pqid></control><display><type>article</type><title>Health monitoring of rolling element bearings using improved wavelet cross spectrum technique and support vector machines</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Skariah, Abhilash ; R, Pradeep ; R, Rejith ; R, Bijudas C</creator><creatorcontrib>Skariah, Abhilash ; R, Pradeep ; R, Rejith ; R, Bijudas C</creatorcontrib><description>An improved wavelet cross spectrum (IWCS) scheme is proposed in this paper for the health monitoring of the rolling element bearings. The parameters under investigation are the axial preload, the lubricant condition and the surface roughness of the contact surfaces. These parameters determine the performance and the life of ball-bearings, especially in the space application which demands low torque noise during the mission life and operating under varying conditions of temperature and speed. The developed method takes the advantages of the wavelet cross spectrum technique for the feature extraction from the non-stationary vibration signatures. The vibration signals of the Rolling Element Bearings (REB) are first analysed by a continuous wavelet transform (CWT) over the selected scales corresponding to the bearing fundamental fault frequencies. Further, cross-correlation is utilised to enhance the defect-related periodic features. In this improved scheme, the contributive bandwidth selection from the Jarque-Bera (JB) statistic index is carried out with the assistance of an outlier technique. This method removes any outliers in the JB index data by using the linear interpolation and thereby enhancing the index value of the other cross-correlated scales. Experiments are conducted to verify the validity of the IWCS and found to be very effective in diagnosing the bearing health conditions. Using the support vector machines (SVM), the classification of the health conditions is obtained based on the novel improved wavelet cross spectrum analysis.
•Deals with the condition monitoring of rolling element bearings.•The wavelet cross-spectrum method for extracting defect related signatures from vibration data is enhanced.•An outlier removing scheme is used in determining the contributing bandwidth selection.•The classification of different health conditions is obtained using support vector machines.</description><identifier>ISSN: 0301-679X</identifier><identifier>EISSN: 1879-2464</identifier><identifier>DOI: 10.1016/j.triboint.2020.106650</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Ball bearings ; Bearings ; Continuous wavelet transform ; Cross correlation ; Cross spectrum ; Feature extraction ; Health monitoring ; Interpolation ; Outlier technique ; Outliers (statistics) ; Parameters ; Roller bearings ; Rolling element bearing ; Spectrum analysis ; Support vector machines ; Surface roughness ; Vibration analysis ; Wavelet ; Wavelet analysis ; Wavelet transforms</subject><ispartof>Tribology international, 2021-02, Vol.154, p.106650, Article 106650</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier BV Feb 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-13525406a23475ded2ca673a6c4e04a498504f88519d414d2441ec5905f90f8c3</citedby><cites>FETCH-LOGICAL-c340t-13525406a23475ded2ca673a6c4e04a498504f88519d414d2441ec5905f90f8c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.triboint.2020.106650$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27911,27912,45982</link.rule.ids></links><search><creatorcontrib>Skariah, Abhilash</creatorcontrib><creatorcontrib>R, Pradeep</creatorcontrib><creatorcontrib>R, Rejith</creatorcontrib><creatorcontrib>R, Bijudas C</creatorcontrib><title>Health monitoring of rolling element bearings using improved wavelet cross spectrum technique and support vector machines</title><title>Tribology international</title><description>An improved wavelet cross spectrum (IWCS) scheme is proposed in this paper for the health monitoring of the rolling element bearings. The parameters under investigation are the axial preload, the lubricant condition and the surface roughness of the contact surfaces. These parameters determine the performance and the life of ball-bearings, especially in the space application which demands low torque noise during the mission life and operating under varying conditions of temperature and speed. The developed method takes the advantages of the wavelet cross spectrum technique for the feature extraction from the non-stationary vibration signatures. The vibration signals of the Rolling Element Bearings (REB) are first analysed by a continuous wavelet transform (CWT) over the selected scales corresponding to the bearing fundamental fault frequencies. Further, cross-correlation is utilised to enhance the defect-related periodic features. In this improved scheme, the contributive bandwidth selection from the Jarque-Bera (JB) statistic index is carried out with the assistance of an outlier technique. This method removes any outliers in the JB index data by using the linear interpolation and thereby enhancing the index value of the other cross-correlated scales. Experiments are conducted to verify the validity of the IWCS and found to be very effective in diagnosing the bearing health conditions. Using the support vector machines (SVM), the classification of the health conditions is obtained based on the novel improved wavelet cross spectrum analysis.
•Deals with the condition monitoring of rolling element bearings.•The wavelet cross-spectrum method for extracting defect related signatures from vibration data is enhanced.•An outlier removing scheme is used in determining the contributing bandwidth selection.•The classification of different health conditions is obtained using support vector machines.</description><subject>Ball bearings</subject><subject>Bearings</subject><subject>Continuous wavelet transform</subject><subject>Cross correlation</subject><subject>Cross spectrum</subject><subject>Feature extraction</subject><subject>Health monitoring</subject><subject>Interpolation</subject><subject>Outlier technique</subject><subject>Outliers (statistics)</subject><subject>Parameters</subject><subject>Roller bearings</subject><subject>Rolling element bearing</subject><subject>Spectrum analysis</subject><subject>Support vector machines</subject><subject>Surface roughness</subject><subject>Vibration analysis</subject><subject>Wavelet</subject><subject>Wavelet analysis</subject><subject>Wavelet transforms</subject><issn>0301-679X</issn><issn>1879-2464</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFUE1LxDAQDaLg-vEXJOC5a5ImaXtTFr9gwYuCtxDTqZulTWqSrvjvTV09e5ph5r038x5CF5QsKaHyartMwb5569KSETYPpRTkAC1oXTUF45IfogUpCS1k1bweo5MYt4SQijfVAn09gO7TBg_e2eSDde_Ydzj4vp9b6GEAl_Ab6HkV8RTnsR3G4HfQ4k-9y5CETfAx4jiCSWEacAKzcfZjAqxdi-M0jj4kvMtbH_CgzcY6iGfoqNN9hPPfeope7m6fVw_F-un-cXWzLkzJSSpoKZjgRGpW8kq00DKjZVVqaTgQrnlTC8K7uha0aTnlLeOcghENEV1DutqUp-hyr5t_zi_FpLZ-Ci6fVIzXNROSCpFRco_6sRKgU2Owgw5fihI1x6y26i9mNces9jFn4vWeCNnDzkJQ0VhwBlobsmHVevufxDckCovp</recordid><startdate>202102</startdate><enddate>202102</enddate><creator>Skariah, Abhilash</creator><creator>R, Pradeep</creator><creator>R, Rejith</creator><creator>R, Bijudas C</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>202102</creationdate><title>Health monitoring of rolling element bearings using improved wavelet cross spectrum technique and support vector machines</title><author>Skariah, Abhilash ; R, Pradeep ; R, Rejith ; R, Bijudas C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-13525406a23475ded2ca673a6c4e04a498504f88519d414d2441ec5905f90f8c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Ball bearings</topic><topic>Bearings</topic><topic>Continuous wavelet transform</topic><topic>Cross correlation</topic><topic>Cross spectrum</topic><topic>Feature extraction</topic><topic>Health monitoring</topic><topic>Interpolation</topic><topic>Outlier technique</topic><topic>Outliers (statistics)</topic><topic>Parameters</topic><topic>Roller bearings</topic><topic>Rolling element bearing</topic><topic>Spectrum analysis</topic><topic>Support vector machines</topic><topic>Surface roughness</topic><topic>Vibration analysis</topic><topic>Wavelet</topic><topic>Wavelet analysis</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Skariah, Abhilash</creatorcontrib><creatorcontrib>R, Pradeep</creatorcontrib><creatorcontrib>R, Rejith</creatorcontrib><creatorcontrib>R, Bijudas C</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Tribology international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Skariah, Abhilash</au><au>R, Pradeep</au><au>R, Rejith</au><au>R, Bijudas C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Health monitoring of rolling element bearings using improved wavelet cross spectrum technique and support vector machines</atitle><jtitle>Tribology international</jtitle><date>2021-02</date><risdate>2021</risdate><volume>154</volume><spage>106650</spage><pages>106650-</pages><artnum>106650</artnum><issn>0301-679X</issn><eissn>1879-2464</eissn><abstract>An improved wavelet cross spectrum (IWCS) scheme is proposed in this paper for the health monitoring of the rolling element bearings. The parameters under investigation are the axial preload, the lubricant condition and the surface roughness of the contact surfaces. These parameters determine the performance and the life of ball-bearings, especially in the space application which demands low torque noise during the mission life and operating under varying conditions of temperature and speed. The developed method takes the advantages of the wavelet cross spectrum technique for the feature extraction from the non-stationary vibration signatures. The vibration signals of the Rolling Element Bearings (REB) are first analysed by a continuous wavelet transform (CWT) over the selected scales corresponding to the bearing fundamental fault frequencies. Further, cross-correlation is utilised to enhance the defect-related periodic features. In this improved scheme, the contributive bandwidth selection from the Jarque-Bera (JB) statistic index is carried out with the assistance of an outlier technique. This method removes any outliers in the JB index data by using the linear interpolation and thereby enhancing the index value of the other cross-correlated scales. Experiments are conducted to verify the validity of the IWCS and found to be very effective in diagnosing the bearing health conditions. Using the support vector machines (SVM), the classification of the health conditions is obtained based on the novel improved wavelet cross spectrum analysis.
•Deals with the condition monitoring of rolling element bearings.•The wavelet cross-spectrum method for extracting defect related signatures from vibration data is enhanced.•An outlier removing scheme is used in determining the contributing bandwidth selection.•The classification of different health conditions is obtained using support vector machines.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.triboint.2020.106650</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0301-679X |
ispartof | Tribology international, 2021-02, Vol.154, p.106650, Article 106650 |
issn | 0301-679X 1879-2464 |
language | eng |
recordid | cdi_proquest_journals_2488256155 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Ball bearings Bearings Continuous wavelet transform Cross correlation Cross spectrum Feature extraction Health monitoring Interpolation Outlier technique Outliers (statistics) Parameters Roller bearings Rolling element bearing Spectrum analysis Support vector machines Surface roughness Vibration analysis Wavelet Wavelet analysis Wavelet transforms |
title | Health monitoring of rolling element bearings using improved wavelet cross spectrum technique and support vector machines |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T18%3A36%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Health%20monitoring%20of%20rolling%20element%20bearings%20using%20improved%20wavelet%20cross%20spectrum%20technique%20and%20support%20vector%20machines&rft.jtitle=Tribology%20international&rft.au=Skariah,%20Abhilash&rft.date=2021-02&rft.volume=154&rft.spage=106650&rft.pages=106650-&rft.artnum=106650&rft.issn=0301-679X&rft.eissn=1879-2464&rft_id=info:doi/10.1016/j.triboint.2020.106650&rft_dat=%3Cproquest_cross%3E2488256155%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2488256155&rft_id=info:pmid/&rft_els_id=S0301679X20304771&rfr_iscdi=true |