DNN based continuous speech recognition system of Punjabi language on Kaldi toolkit

This paper demonstrates the effect of incorporating Deep Neural Network techniques in speech recognition systems. Speech recognition through hybrid Deep Neural Networks on the Kaldi toolkit for the Punjabi language is implemented. Performance of the automatic speech recognition system drastically im...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of speech technology 2021-03, Vol.24 (1), p.41-45
Hauptverfasser: Guglani, Jyoti, Mishra, A. N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper demonstrates the effect of incorporating Deep Neural Network techniques in speech recognition systems. Speech recognition through hybrid Deep Neural Networks on the Kaldi toolkit for the Punjabi language is implemented. Performance of the automatic speech recognition system drastically improves using DNN, and further Karel's DNN model gives better recognition performance as compared to Dan's DNN model. Out of MFCC and PLP features, the MFCC feature gives better results. The triphone model gives a lower word error rate than the monophone model, and 3-g gives a lower word error rate as compared to a 2-g model on the Kaldi toolkit for the continuous Punjabi speech recognition system.
ISSN:1381-2416
1572-8110
DOI:10.1007/s10772-020-09717-8