Multi-Object Face Recognition Using Local Binary Pattern Histogram and Haar Cascade Classifier on Low-Resolution Images

This study aims to build a face recognition prototype that can recognize multiple face objects within one frame. The proposed method uses a local binary pattern histogram and Haar cascade classifier on low-resolution images. The lowest data resolution used in this study was 76 × 76 pixels and the hi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of engineering and technology innovation 2021-01, Vol.11 (1), p.45-58
Hauptverfasser: R. Rizal Isnanto, Rochim, Adian, Eridani, Dania, Cahyono, Guntur
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 58
container_issue 1
container_start_page 45
container_title International journal of engineering and technology innovation
container_volume 11
creator R. Rizal Isnanto
Rochim, Adian
Eridani, Dania
Cahyono, Guntur
description This study aims to build a face recognition prototype that can recognize multiple face objects within one frame. The proposed method uses a local binary pattern histogram and Haar cascade classifier on low-resolution images. The lowest data resolution used in this study was 76 × 76 pixels and the highest was 156 × 156 pixels. The face images were preprocessed using the histogram equalization and median filtering. The face recognition prototype proposed successfully recognized four face objects in one frame. The results obtained were comparable for local and real-time stream video data for testing. The RR obtained with the local data test was 99.67%, which indicates better performance in recognizing 75 frames for each object, compared to the 92.67% RR for the real-time data stream. In comparison to the results obtained in previous works, it can be concluded that the proposed method yields the highest RR of 99.67%.
doi_str_mv 10.46604/ijeti.2021.6174
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2488163704</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2488163704</sourcerecordid><originalsourceid>FETCH-LOGICAL-c271t-6f7d9e28d7499310be4228f962c780651cf16847eb8e8987ebbdd011520be91c3</originalsourceid><addsrcrecordid>eNotkMFLwzAUh4MoOObuHgOeO5O0S5OjFucGlclw4C2kaVpSumYmKcP_3qzz9HuHj9977wPgEaNlRinKnk2ng1kSRPCS4jy7ATNCCE0Y4t-305wmq5Twe7DwvkMIRYYQzmfg_DH2wSS7qtMqwLVUGu61su1ggrEDPHgztLC0Svbw1QzS_cJPGYJ2A9wYH2zr5BHKoYYbKR0spFey1rDopfemMdrB2FHac7LX3vbjVLk9ylb7B3DXyN7rxX_OwWH99lVsknL3vi1eykSRHIeENnnNNWF1nnGeYlTpeDdrOCUqZ4iusGowZVmuK6YZZzGrukYYr0hEOVbpHDxde0_O_ozaB9HZ0Q1xpSAZY5imOcoiha6UctZ7pxtxcuYYvxUYicmwmAyLi2FxMZz-Afyrb4c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2488163704</pqid></control><display><type>article</type><title>Multi-Object Face Recognition Using Local Binary Pattern Histogram and Haar Cascade Classifier on Low-Resolution Images</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>R. Rizal Isnanto ; Rochim, Adian ; Eridani, Dania ; Cahyono, Guntur</creator><creatorcontrib>R. Rizal Isnanto ; Rochim, Adian ; Eridani, Dania ; Cahyono, Guntur</creatorcontrib><description>This study aims to build a face recognition prototype that can recognize multiple face objects within one frame. The proposed method uses a local binary pattern histogram and Haar cascade classifier on low-resolution images. The lowest data resolution used in this study was 76 × 76 pixels and the highest was 156 × 156 pixels. The face images were preprocessed using the histogram equalization and median filtering. The face recognition prototype proposed successfully recognized four face objects in one frame. The results obtained were comparable for local and real-time stream video data for testing. The RR obtained with the local data test was 99.67%, which indicates better performance in recognizing 75 frames for each object, compared to the 92.67% RR for the real-time data stream. In comparison to the results obtained in previous works, it can be concluded that the proposed method yields the highest RR of 99.67%.</description><identifier>ISSN: 2223-5329</identifier><identifier>EISSN: 2226-809X</identifier><identifier>DOI: 10.46604/ijeti.2021.6174</identifier><language>eng</language><publisher>Taiwan: Taiwan Association of Engineering and Technology Innovation</publisher><subject>Classifiers ; Data transmission ; Equalization ; Face recognition ; Histograms ; Image resolution ; Object recognition ; Pixels ; Prototypes ; Real time ; Video data</subject><ispartof>International journal of engineering and technology innovation, 2021-01, Vol.11 (1), p.45-58</ispartof><rights>2021. This work is published under https://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c271t-6f7d9e28d7499310be4228f962c780651cf16847eb8e8987ebbdd011520be91c3</citedby><cites>FETCH-LOGICAL-c271t-6f7d9e28d7499310be4228f962c780651cf16847eb8e8987ebbdd011520be91c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids></links><search><creatorcontrib>R. Rizal Isnanto</creatorcontrib><creatorcontrib>Rochim, Adian</creatorcontrib><creatorcontrib>Eridani, Dania</creatorcontrib><creatorcontrib>Cahyono, Guntur</creatorcontrib><title>Multi-Object Face Recognition Using Local Binary Pattern Histogram and Haar Cascade Classifier on Low-Resolution Images</title><title>International journal of engineering and technology innovation</title><description>This study aims to build a face recognition prototype that can recognize multiple face objects within one frame. The proposed method uses a local binary pattern histogram and Haar cascade classifier on low-resolution images. The lowest data resolution used in this study was 76 × 76 pixels and the highest was 156 × 156 pixels. The face images were preprocessed using the histogram equalization and median filtering. The face recognition prototype proposed successfully recognized four face objects in one frame. The results obtained were comparable for local and real-time stream video data for testing. The RR obtained with the local data test was 99.67%, which indicates better performance in recognizing 75 frames for each object, compared to the 92.67% RR for the real-time data stream. In comparison to the results obtained in previous works, it can be concluded that the proposed method yields the highest RR of 99.67%.</description><subject>Classifiers</subject><subject>Data transmission</subject><subject>Equalization</subject><subject>Face recognition</subject><subject>Histograms</subject><subject>Image resolution</subject><subject>Object recognition</subject><subject>Pixels</subject><subject>Prototypes</subject><subject>Real time</subject><subject>Video data</subject><issn>2223-5329</issn><issn>2226-809X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNotkMFLwzAUh4MoOObuHgOeO5O0S5OjFucGlclw4C2kaVpSumYmKcP_3qzz9HuHj9977wPgEaNlRinKnk2ng1kSRPCS4jy7ATNCCE0Y4t-305wmq5Twe7DwvkMIRYYQzmfg_DH2wSS7qtMqwLVUGu61su1ggrEDPHgztLC0Svbw1QzS_cJPGYJ2A9wYH2zr5BHKoYYbKR0spFey1rDopfemMdrB2FHac7LX3vbjVLk9ylb7B3DXyN7rxX_OwWH99lVsknL3vi1eykSRHIeENnnNNWF1nnGeYlTpeDdrOCUqZ4iusGowZVmuK6YZZzGrukYYr0hEOVbpHDxde0_O_ozaB9HZ0Q1xpSAZY5imOcoiha6UctZ7pxtxcuYYvxUYicmwmAyLi2FxMZz-Afyrb4c</recordid><startdate>20210120</startdate><enddate>20210120</enddate><creator>R. Rizal Isnanto</creator><creator>Rochim, Adian</creator><creator>Eridani, Dania</creator><creator>Cahyono, Guntur</creator><general>Taiwan Association of Engineering and Technology Innovation</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BVBZV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20210120</creationdate><title>Multi-Object Face Recognition Using Local Binary Pattern Histogram and Haar Cascade Classifier on Low-Resolution Images</title><author>R. Rizal Isnanto ; Rochim, Adian ; Eridani, Dania ; Cahyono, Guntur</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c271t-6f7d9e28d7499310be4228f962c780651cf16847eb8e8987ebbdd011520be91c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Classifiers</topic><topic>Data transmission</topic><topic>Equalization</topic><topic>Face recognition</topic><topic>Histograms</topic><topic>Image resolution</topic><topic>Object recognition</topic><topic>Pixels</topic><topic>Prototypes</topic><topic>Real time</topic><topic>Video data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>R. Rizal Isnanto</creatorcontrib><creatorcontrib>Rochim, Adian</creatorcontrib><creatorcontrib>Eridani, Dania</creatorcontrib><creatorcontrib>Cahyono, Guntur</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>East &amp; South Asia Database</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>International journal of engineering and technology innovation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>R. Rizal Isnanto</au><au>Rochim, Adian</au><au>Eridani, Dania</au><au>Cahyono, Guntur</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-Object Face Recognition Using Local Binary Pattern Histogram and Haar Cascade Classifier on Low-Resolution Images</atitle><jtitle>International journal of engineering and technology innovation</jtitle><date>2021-01-20</date><risdate>2021</risdate><volume>11</volume><issue>1</issue><spage>45</spage><epage>58</epage><pages>45-58</pages><issn>2223-5329</issn><eissn>2226-809X</eissn><abstract>This study aims to build a face recognition prototype that can recognize multiple face objects within one frame. The proposed method uses a local binary pattern histogram and Haar cascade classifier on low-resolution images. The lowest data resolution used in this study was 76 × 76 pixels and the highest was 156 × 156 pixels. The face images were preprocessed using the histogram equalization and median filtering. The face recognition prototype proposed successfully recognized four face objects in one frame. The results obtained were comparable for local and real-time stream video data for testing. The RR obtained with the local data test was 99.67%, which indicates better performance in recognizing 75 frames for each object, compared to the 92.67% RR for the real-time data stream. In comparison to the results obtained in previous works, it can be concluded that the proposed method yields the highest RR of 99.67%.</abstract><cop>Taiwan</cop><pub>Taiwan Association of Engineering and Technology Innovation</pub><doi>10.46604/ijeti.2021.6174</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2223-5329
ispartof International journal of engineering and technology innovation, 2021-01, Vol.11 (1), p.45-58
issn 2223-5329
2226-809X
language eng
recordid cdi_proquest_journals_2488163704
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Classifiers
Data transmission
Equalization
Face recognition
Histograms
Image resolution
Object recognition
Pixels
Prototypes
Real time
Video data
title Multi-Object Face Recognition Using Local Binary Pattern Histogram and Haar Cascade Classifier on Low-Resolution Images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T13%3A49%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-Object%20Face%20Recognition%20Using%20Local%20Binary%20Pattern%20Histogram%20and%20Haar%20Cascade%20Classifier%20on%20Low-Resolution%20Images&rft.jtitle=International%20journal%20of%20engineering%20and%20technology%20innovation&rft.au=R.%20Rizal%20Isnanto&rft.date=2021-01-20&rft.volume=11&rft.issue=1&rft.spage=45&rft.epage=58&rft.pages=45-58&rft.issn=2223-5329&rft.eissn=2226-809X&rft_id=info:doi/10.46604/ijeti.2021.6174&rft_dat=%3Cproquest_cross%3E2488163704%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2488163704&rft_id=info:pmid/&rfr_iscdi=true