Co2+/3+/4+‐Regulated Electron State of Mn‐O for Superb Aqueous Zinc‐Manganese Oxide Batteries

Aqueous rechargeable Zn–MnOx batteries are very attractive due to their low‐cost and high energy density. However, Mn(III) disproportionation and Jahn–Teller distortion can induce Mn(II) dissolution and irreversible phase changes, greatly deteriorating the cycling life. Herein, a multi‐valence cobal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced energy materials 2021-02, Vol.11 (6), p.n/a
Hauptverfasser: Ji, Jie, Wan, Houzhao, Zhang, Bao, Wang, Cong, Gan, Yi, Tan, Qiuyang, Wang, Nengze, Yao, Jia, Zheng, Zhaohan, Liang, Pei, Zhang, Jun, Wang, Hanbin, Tao, Li, Wang, Yi, Chao, Dongliang, Wang, Hao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 6
container_start_page
container_title Advanced energy materials
container_volume 11
creator Ji, Jie
Wan, Houzhao
Zhang, Bao
Wang, Cong
Gan, Yi
Tan, Qiuyang
Wang, Nengze
Yao, Jia
Zheng, Zhaohan
Liang, Pei
Zhang, Jun
Wang, Hanbin
Tao, Li
Wang, Yi
Chao, Dongliang
Wang, Hao
description Aqueous rechargeable Zn–MnOx batteries are very attractive due to their low‐cost and high energy density. However, Mn(III) disproportionation and Jahn–Teller distortion can induce Mn(II) dissolution and irreversible phase changes, greatly deteriorating the cycling life. Herein, a multi‐valence cobalt‐doped Mn3O4 (Co‐Mn3O4) with high capacity and reversibility, which lies in the multiple roles of the various states of doped cobalt, is reported. The Co2+ doping between the phase change product δ‐MnO2 layer acts as a “structural pillar,” and the Co4+ in the layer can increase the conductivity of Mn4+ and hold the high specific capacity. More importantly, Co ion (Co2+, Co3+) doping can effectively inhibit the Jahn–Teller effect in discharge products and promote ion diffusion. Using X‐ray absorption spectra results and density functional theory modelling, the multiple roles of doped cobalt are verified. Specifically, the Co‐Mn3O4 cathode shows high specific capacity of 362 mAh g–1 and energy density of 463.1 Wh kg–1 at 100 mA g–1. After 1100 cycles at 2.0 A g–1, the capacity retention rate reaches 80%. This work brings a new idea and approach to the design of highly reversible Mn‐based oxides cathode materials for Zn‐ion batteries. A multivalent cobalt (Co2+, Co3+)‐doped Mn3O4 nanosheet is successfully constructed on carbon nanosheet arrays (Co‐Mn3O4/CNA) as a cathode material for aqueous zinc‐ion batteries. Cobalt ions with different valence states play important roles in the first charging phase change product and discharge products, thereby improving the electrochemical performance of the battery.
doi_str_mv 10.1002/aenm.202003203
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2488115030</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2488115030</sourcerecordid><originalsourceid>FETCH-LOGICAL-g2023-81c875a7e9c65b189de2c1e3cd6df6e7044000b0816bab59a20310f40d0b88b63</originalsourceid><addsrcrecordid>eNo9UE1Lw0AQXUTBor16XvBY0s5-ZLs51lI_oLVg9eJl2SSTkpJm6yZBe_Mn-Bv9JW6pdC4zj3nMe_MIuWEwZAB8ZLHeDjlwAMFBnJEeU0xGSks4P82CX5J-02wglEwYCNEj2dTxwUgMRnLw-_3zguuusi3mdFZh1npX01UbMHUFXdSBsKSF83TV7dCndPLRoesa-l7WWdgtbL22NTZIl19ljvTOti36EptrclHYqsH-f78ib_ez1-ljNF8-PE0n82gdjItIs0yPYzvGJFNxynSSI88YiixXeaFwDFIG4yloplKbxokNjzIoJOSQap0qcUVuj3d33gVrTWs2rvN1kDRcas1YDAICKzmyPssK92bny631e8PAHII0hyDNKUgzmT0vTkj8Aa74aY4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2488115030</pqid></control><display><type>article</type><title>Co2+/3+/4+‐Regulated Electron State of Mn‐O for Superb Aqueous Zinc‐Manganese Oxide Batteries</title><source>Wiley-Blackwell Journals</source><creator>Ji, Jie ; Wan, Houzhao ; Zhang, Bao ; Wang, Cong ; Gan, Yi ; Tan, Qiuyang ; Wang, Nengze ; Yao, Jia ; Zheng, Zhaohan ; Liang, Pei ; Zhang, Jun ; Wang, Hanbin ; Tao, Li ; Wang, Yi ; Chao, Dongliang ; Wang, Hao</creator><creatorcontrib>Ji, Jie ; Wan, Houzhao ; Zhang, Bao ; Wang, Cong ; Gan, Yi ; Tan, Qiuyang ; Wang, Nengze ; Yao, Jia ; Zheng, Zhaohan ; Liang, Pei ; Zhang, Jun ; Wang, Hanbin ; Tao, Li ; Wang, Yi ; Chao, Dongliang ; Wang, Hao</creatorcontrib><description>Aqueous rechargeable Zn–MnOx batteries are very attractive due to their low‐cost and high energy density. However, Mn(III) disproportionation and Jahn–Teller distortion can induce Mn(II) dissolution and irreversible phase changes, greatly deteriorating the cycling life. Herein, a multi‐valence cobalt‐doped Mn3O4 (Co‐Mn3O4) with high capacity and reversibility, which lies in the multiple roles of the various states of doped cobalt, is reported. The Co2+ doping between the phase change product δ‐MnO2 layer acts as a “structural pillar,” and the Co4+ in the layer can increase the conductivity of Mn4+ and hold the high specific capacity. More importantly, Co ion (Co2+, Co3+) doping can effectively inhibit the Jahn–Teller effect in discharge products and promote ion diffusion. Using X‐ray absorption spectra results and density functional theory modelling, the multiple roles of doped cobalt are verified. Specifically, the Co‐Mn3O4 cathode shows high specific capacity of 362 mAh g–1 and energy density of 463.1 Wh kg–1 at 100 mA g–1. After 1100 cycles at 2.0 A g–1, the capacity retention rate reaches 80%. This work brings a new idea and approach to the design of highly reversible Mn‐based oxides cathode materials for Zn‐ion batteries. A multivalent cobalt (Co2+, Co3+)‐doped Mn3O4 nanosheet is successfully constructed on carbon nanosheet arrays (Co‐Mn3O4/CNA) as a cathode material for aqueous zinc‐ion batteries. Cobalt ions with different valence states play important roles in the first charging phase change product and discharge products, thereby improving the electrochemical performance of the battery.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.202003203</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Absorption spectra ; Cathodes ; Co doping ; Cobalt ; Density functional theory ; Disproportionation ; Doping ; Electrode materials ; Electron states ; Flux density ; Ion diffusion ; Jahn-Teller effect ; Manganese dioxide ; manganese oxide ; Manganese oxides ; phase changes ; Rechargeable batteries ; Zinc ; zinc‐ion batteries</subject><ispartof>Advanced energy materials, 2021-02, Vol.11 (6), p.n/a</ispartof><rights>2020 Wiley‐VCH GmbH</rights><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-4894-7653</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faenm.202003203$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faenm.202003203$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Ji, Jie</creatorcontrib><creatorcontrib>Wan, Houzhao</creatorcontrib><creatorcontrib>Zhang, Bao</creatorcontrib><creatorcontrib>Wang, Cong</creatorcontrib><creatorcontrib>Gan, Yi</creatorcontrib><creatorcontrib>Tan, Qiuyang</creatorcontrib><creatorcontrib>Wang, Nengze</creatorcontrib><creatorcontrib>Yao, Jia</creatorcontrib><creatorcontrib>Zheng, Zhaohan</creatorcontrib><creatorcontrib>Liang, Pei</creatorcontrib><creatorcontrib>Zhang, Jun</creatorcontrib><creatorcontrib>Wang, Hanbin</creatorcontrib><creatorcontrib>Tao, Li</creatorcontrib><creatorcontrib>Wang, Yi</creatorcontrib><creatorcontrib>Chao, Dongliang</creatorcontrib><creatorcontrib>Wang, Hao</creatorcontrib><title>Co2+/3+/4+‐Regulated Electron State of Mn‐O for Superb Aqueous Zinc‐Manganese Oxide Batteries</title><title>Advanced energy materials</title><description>Aqueous rechargeable Zn–MnOx batteries are very attractive due to their low‐cost and high energy density. However, Mn(III) disproportionation and Jahn–Teller distortion can induce Mn(II) dissolution and irreversible phase changes, greatly deteriorating the cycling life. Herein, a multi‐valence cobalt‐doped Mn3O4 (Co‐Mn3O4) with high capacity and reversibility, which lies in the multiple roles of the various states of doped cobalt, is reported. The Co2+ doping between the phase change product δ‐MnO2 layer acts as a “structural pillar,” and the Co4+ in the layer can increase the conductivity of Mn4+ and hold the high specific capacity. More importantly, Co ion (Co2+, Co3+) doping can effectively inhibit the Jahn–Teller effect in discharge products and promote ion diffusion. Using X‐ray absorption spectra results and density functional theory modelling, the multiple roles of doped cobalt are verified. Specifically, the Co‐Mn3O4 cathode shows high specific capacity of 362 mAh g–1 and energy density of 463.1 Wh kg–1 at 100 mA g–1. After 1100 cycles at 2.0 A g–1, the capacity retention rate reaches 80%. This work brings a new idea and approach to the design of highly reversible Mn‐based oxides cathode materials for Zn‐ion batteries. A multivalent cobalt (Co2+, Co3+)‐doped Mn3O4 nanosheet is successfully constructed on carbon nanosheet arrays (Co‐Mn3O4/CNA) as a cathode material for aqueous zinc‐ion batteries. Cobalt ions with different valence states play important roles in the first charging phase change product and discharge products, thereby improving the electrochemical performance of the battery.</description><subject>Absorption spectra</subject><subject>Cathodes</subject><subject>Co doping</subject><subject>Cobalt</subject><subject>Density functional theory</subject><subject>Disproportionation</subject><subject>Doping</subject><subject>Electrode materials</subject><subject>Electron states</subject><subject>Flux density</subject><subject>Ion diffusion</subject><subject>Jahn-Teller effect</subject><subject>Manganese dioxide</subject><subject>manganese oxide</subject><subject>Manganese oxides</subject><subject>phase changes</subject><subject>Rechargeable batteries</subject><subject>Zinc</subject><subject>zinc‐ion batteries</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9UE1Lw0AQXUTBor16XvBY0s5-ZLs51lI_oLVg9eJl2SSTkpJm6yZBe_Mn-Bv9JW6pdC4zj3nMe_MIuWEwZAB8ZLHeDjlwAMFBnJEeU0xGSks4P82CX5J-02wglEwYCNEj2dTxwUgMRnLw-_3zguuusi3mdFZh1npX01UbMHUFXdSBsKSF83TV7dCndPLRoesa-l7WWdgtbL22NTZIl19ljvTOti36EptrclHYqsH-f78ib_ez1-ljNF8-PE0n82gdjItIs0yPYzvGJFNxynSSI88YiixXeaFwDFIG4yloplKbxokNjzIoJOSQap0qcUVuj3d33gVrTWs2rvN1kDRcas1YDAICKzmyPssK92bny631e8PAHII0hyDNKUgzmT0vTkj8Aa74aY4</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Ji, Jie</creator><creator>Wan, Houzhao</creator><creator>Zhang, Bao</creator><creator>Wang, Cong</creator><creator>Gan, Yi</creator><creator>Tan, Qiuyang</creator><creator>Wang, Nengze</creator><creator>Yao, Jia</creator><creator>Zheng, Zhaohan</creator><creator>Liang, Pei</creator><creator>Zhang, Jun</creator><creator>Wang, Hanbin</creator><creator>Tao, Li</creator><creator>Wang, Yi</creator><creator>Chao, Dongliang</creator><creator>Wang, Hao</creator><general>Wiley Subscription Services, Inc</general><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-4894-7653</orcidid></search><sort><creationdate>20210201</creationdate><title>Co2+/3+/4+‐Regulated Electron State of Mn‐O for Superb Aqueous Zinc‐Manganese Oxide Batteries</title><author>Ji, Jie ; Wan, Houzhao ; Zhang, Bao ; Wang, Cong ; Gan, Yi ; Tan, Qiuyang ; Wang, Nengze ; Yao, Jia ; Zheng, Zhaohan ; Liang, Pei ; Zhang, Jun ; Wang, Hanbin ; Tao, Li ; Wang, Yi ; Chao, Dongliang ; Wang, Hao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g2023-81c875a7e9c65b189de2c1e3cd6df6e7044000b0816bab59a20310f40d0b88b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Absorption spectra</topic><topic>Cathodes</topic><topic>Co doping</topic><topic>Cobalt</topic><topic>Density functional theory</topic><topic>Disproportionation</topic><topic>Doping</topic><topic>Electrode materials</topic><topic>Electron states</topic><topic>Flux density</topic><topic>Ion diffusion</topic><topic>Jahn-Teller effect</topic><topic>Manganese dioxide</topic><topic>manganese oxide</topic><topic>Manganese oxides</topic><topic>phase changes</topic><topic>Rechargeable batteries</topic><topic>Zinc</topic><topic>zinc‐ion batteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ji, Jie</creatorcontrib><creatorcontrib>Wan, Houzhao</creatorcontrib><creatorcontrib>Zhang, Bao</creatorcontrib><creatorcontrib>Wang, Cong</creatorcontrib><creatorcontrib>Gan, Yi</creatorcontrib><creatorcontrib>Tan, Qiuyang</creatorcontrib><creatorcontrib>Wang, Nengze</creatorcontrib><creatorcontrib>Yao, Jia</creatorcontrib><creatorcontrib>Zheng, Zhaohan</creatorcontrib><creatorcontrib>Liang, Pei</creatorcontrib><creatorcontrib>Zhang, Jun</creatorcontrib><creatorcontrib>Wang, Hanbin</creatorcontrib><creatorcontrib>Tao, Li</creatorcontrib><creatorcontrib>Wang, Yi</creatorcontrib><creatorcontrib>Chao, Dongliang</creatorcontrib><creatorcontrib>Wang, Hao</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ji, Jie</au><au>Wan, Houzhao</au><au>Zhang, Bao</au><au>Wang, Cong</au><au>Gan, Yi</au><au>Tan, Qiuyang</au><au>Wang, Nengze</au><au>Yao, Jia</au><au>Zheng, Zhaohan</au><au>Liang, Pei</au><au>Zhang, Jun</au><au>Wang, Hanbin</au><au>Tao, Li</au><au>Wang, Yi</au><au>Chao, Dongliang</au><au>Wang, Hao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Co2+/3+/4+‐Regulated Electron State of Mn‐O for Superb Aqueous Zinc‐Manganese Oxide Batteries</atitle><jtitle>Advanced energy materials</jtitle><date>2021-02-01</date><risdate>2021</risdate><volume>11</volume><issue>6</issue><epage>n/a</epage><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>Aqueous rechargeable Zn–MnOx batteries are very attractive due to their low‐cost and high energy density. However, Mn(III) disproportionation and Jahn–Teller distortion can induce Mn(II) dissolution and irreversible phase changes, greatly deteriorating the cycling life. Herein, a multi‐valence cobalt‐doped Mn3O4 (Co‐Mn3O4) with high capacity and reversibility, which lies in the multiple roles of the various states of doped cobalt, is reported. The Co2+ doping between the phase change product δ‐MnO2 layer acts as a “structural pillar,” and the Co4+ in the layer can increase the conductivity of Mn4+ and hold the high specific capacity. More importantly, Co ion (Co2+, Co3+) doping can effectively inhibit the Jahn–Teller effect in discharge products and promote ion diffusion. Using X‐ray absorption spectra results and density functional theory modelling, the multiple roles of doped cobalt are verified. Specifically, the Co‐Mn3O4 cathode shows high specific capacity of 362 mAh g–1 and energy density of 463.1 Wh kg–1 at 100 mA g–1. After 1100 cycles at 2.0 A g–1, the capacity retention rate reaches 80%. This work brings a new idea and approach to the design of highly reversible Mn‐based oxides cathode materials for Zn‐ion batteries. A multivalent cobalt (Co2+, Co3+)‐doped Mn3O4 nanosheet is successfully constructed on carbon nanosheet arrays (Co‐Mn3O4/CNA) as a cathode material for aqueous zinc‐ion batteries. Cobalt ions with different valence states play important roles in the first charging phase change product and discharge products, thereby improving the electrochemical performance of the battery.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/aenm.202003203</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-4894-7653</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1614-6832
ispartof Advanced energy materials, 2021-02, Vol.11 (6), p.n/a
issn 1614-6832
1614-6840
language eng
recordid cdi_proquest_journals_2488115030
source Wiley-Blackwell Journals
subjects Absorption spectra
Cathodes
Co doping
Cobalt
Density functional theory
Disproportionation
Doping
Electrode materials
Electron states
Flux density
Ion diffusion
Jahn-Teller effect
Manganese dioxide
manganese oxide
Manganese oxides
phase changes
Rechargeable batteries
Zinc
zinc‐ion batteries
title Co2+/3+/4+‐Regulated Electron State of Mn‐O for Superb Aqueous Zinc‐Manganese Oxide Batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T22%3A23%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Co2+/3+/4+%E2%80%90Regulated%20Electron%20State%20of%20Mn%E2%80%90O%20for%20Superb%20Aqueous%20Zinc%E2%80%90Manganese%20Oxide%20Batteries&rft.jtitle=Advanced%20energy%20materials&rft.au=Ji,%20Jie&rft.date=2021-02-01&rft.volume=11&rft.issue=6&rft.epage=n/a&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.202003203&rft_dat=%3Cproquest_wiley%3E2488115030%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2488115030&rft_id=info:pmid/&rfr_iscdi=true