Co2+/3+/4+‐Regulated Electron State of Mn‐O for Superb Aqueous Zinc‐Manganese Oxide Batteries
Aqueous rechargeable Zn–MnOx batteries are very attractive due to their low‐cost and high energy density. However, Mn(III) disproportionation and Jahn–Teller distortion can induce Mn(II) dissolution and irreversible phase changes, greatly deteriorating the cycling life. Herein, a multi‐valence cobal...
Gespeichert in:
Veröffentlicht in: | Advanced energy materials 2021-02, Vol.11 (6), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 6 |
container_start_page | |
container_title | Advanced energy materials |
container_volume | 11 |
creator | Ji, Jie Wan, Houzhao Zhang, Bao Wang, Cong Gan, Yi Tan, Qiuyang Wang, Nengze Yao, Jia Zheng, Zhaohan Liang, Pei Zhang, Jun Wang, Hanbin Tao, Li Wang, Yi Chao, Dongliang Wang, Hao |
description | Aqueous rechargeable Zn–MnOx batteries are very attractive due to their low‐cost and high energy density. However, Mn(III) disproportionation and Jahn–Teller distortion can induce Mn(II) dissolution and irreversible phase changes, greatly deteriorating the cycling life. Herein, a multi‐valence cobalt‐doped Mn3O4 (Co‐Mn3O4) with high capacity and reversibility, which lies in the multiple roles of the various states of doped cobalt, is reported. The Co2+ doping between the phase change product δ‐MnO2 layer acts as a “structural pillar,” and the Co4+ in the layer can increase the conductivity of Mn4+ and hold the high specific capacity. More importantly, Co ion (Co2+, Co3+) doping can effectively inhibit the Jahn–Teller effect in discharge products and promote ion diffusion. Using X‐ray absorption spectra results and density functional theory modelling, the multiple roles of doped cobalt are verified. Specifically, the Co‐Mn3O4 cathode shows high specific capacity of 362 mAh g–1 and energy density of 463.1 Wh kg–1 at 100 mA g–1. After 1100 cycles at 2.0 A g–1, the capacity retention rate reaches 80%. This work brings a new idea and approach to the design of highly reversible Mn‐based oxides cathode materials for Zn‐ion batteries.
A multivalent cobalt (Co2+, Co3+)‐doped Mn3O4 nanosheet is successfully constructed on carbon nanosheet arrays (Co‐Mn3O4/CNA) as a cathode material for aqueous zinc‐ion batteries. Cobalt ions with different valence states play important roles in the first charging phase change product and discharge products, thereby improving the electrochemical performance of the battery. |
doi_str_mv | 10.1002/aenm.202003203 |
format | Article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2488115030</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2488115030</sourcerecordid><originalsourceid>FETCH-LOGICAL-g2023-81c875a7e9c65b189de2c1e3cd6df6e7044000b0816bab59a20310f40d0b88b63</originalsourceid><addsrcrecordid>eNo9UE1Lw0AQXUTBor16XvBY0s5-ZLs51lI_oLVg9eJl2SSTkpJm6yZBe_Mn-Bv9JW6pdC4zj3nMe_MIuWEwZAB8ZLHeDjlwAMFBnJEeU0xGSks4P82CX5J-02wglEwYCNEj2dTxwUgMRnLw-_3zguuusi3mdFZh1npX01UbMHUFXdSBsKSF83TV7dCndPLRoesa-l7WWdgtbL22NTZIl19ljvTOti36EptrclHYqsH-f78ib_ez1-ljNF8-PE0n82gdjItIs0yPYzvGJFNxynSSI88YiixXeaFwDFIG4yloplKbxokNjzIoJOSQap0qcUVuj3d33gVrTWs2rvN1kDRcas1YDAICKzmyPssK92bny631e8PAHII0hyDNKUgzmT0vTkj8Aa74aY4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2488115030</pqid></control><display><type>article</type><title>Co2+/3+/4+‐Regulated Electron State of Mn‐O for Superb Aqueous Zinc‐Manganese Oxide Batteries</title><source>Wiley-Blackwell Journals</source><creator>Ji, Jie ; Wan, Houzhao ; Zhang, Bao ; Wang, Cong ; Gan, Yi ; Tan, Qiuyang ; Wang, Nengze ; Yao, Jia ; Zheng, Zhaohan ; Liang, Pei ; Zhang, Jun ; Wang, Hanbin ; Tao, Li ; Wang, Yi ; Chao, Dongliang ; Wang, Hao</creator><creatorcontrib>Ji, Jie ; Wan, Houzhao ; Zhang, Bao ; Wang, Cong ; Gan, Yi ; Tan, Qiuyang ; Wang, Nengze ; Yao, Jia ; Zheng, Zhaohan ; Liang, Pei ; Zhang, Jun ; Wang, Hanbin ; Tao, Li ; Wang, Yi ; Chao, Dongliang ; Wang, Hao</creatorcontrib><description>Aqueous rechargeable Zn–MnOx batteries are very attractive due to their low‐cost and high energy density. However, Mn(III) disproportionation and Jahn–Teller distortion can induce Mn(II) dissolution and irreversible phase changes, greatly deteriorating the cycling life. Herein, a multi‐valence cobalt‐doped Mn3O4 (Co‐Mn3O4) with high capacity and reversibility, which lies in the multiple roles of the various states of doped cobalt, is reported. The Co2+ doping between the phase change product δ‐MnO2 layer acts as a “structural pillar,” and the Co4+ in the layer can increase the conductivity of Mn4+ and hold the high specific capacity. More importantly, Co ion (Co2+, Co3+) doping can effectively inhibit the Jahn–Teller effect in discharge products and promote ion diffusion. Using X‐ray absorption spectra results and density functional theory modelling, the multiple roles of doped cobalt are verified. Specifically, the Co‐Mn3O4 cathode shows high specific capacity of 362 mAh g–1 and energy density of 463.1 Wh kg–1 at 100 mA g–1. After 1100 cycles at 2.0 A g–1, the capacity retention rate reaches 80%. This work brings a new idea and approach to the design of highly reversible Mn‐based oxides cathode materials for Zn‐ion batteries.
A multivalent cobalt (Co2+, Co3+)‐doped Mn3O4 nanosheet is successfully constructed on carbon nanosheet arrays (Co‐Mn3O4/CNA) as a cathode material for aqueous zinc‐ion batteries. Cobalt ions with different valence states play important roles in the first charging phase change product and discharge products, thereby improving the electrochemical performance of the battery.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.202003203</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Absorption spectra ; Cathodes ; Co doping ; Cobalt ; Density functional theory ; Disproportionation ; Doping ; Electrode materials ; Electron states ; Flux density ; Ion diffusion ; Jahn-Teller effect ; Manganese dioxide ; manganese oxide ; Manganese oxides ; phase changes ; Rechargeable batteries ; Zinc ; zinc‐ion batteries</subject><ispartof>Advanced energy materials, 2021-02, Vol.11 (6), p.n/a</ispartof><rights>2020 Wiley‐VCH GmbH</rights><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-4894-7653</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faenm.202003203$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faenm.202003203$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Ji, Jie</creatorcontrib><creatorcontrib>Wan, Houzhao</creatorcontrib><creatorcontrib>Zhang, Bao</creatorcontrib><creatorcontrib>Wang, Cong</creatorcontrib><creatorcontrib>Gan, Yi</creatorcontrib><creatorcontrib>Tan, Qiuyang</creatorcontrib><creatorcontrib>Wang, Nengze</creatorcontrib><creatorcontrib>Yao, Jia</creatorcontrib><creatorcontrib>Zheng, Zhaohan</creatorcontrib><creatorcontrib>Liang, Pei</creatorcontrib><creatorcontrib>Zhang, Jun</creatorcontrib><creatorcontrib>Wang, Hanbin</creatorcontrib><creatorcontrib>Tao, Li</creatorcontrib><creatorcontrib>Wang, Yi</creatorcontrib><creatorcontrib>Chao, Dongliang</creatorcontrib><creatorcontrib>Wang, Hao</creatorcontrib><title>Co2+/3+/4+‐Regulated Electron State of Mn‐O for Superb Aqueous Zinc‐Manganese Oxide Batteries</title><title>Advanced energy materials</title><description>Aqueous rechargeable Zn–MnOx batteries are very attractive due to their low‐cost and high energy density. However, Mn(III) disproportionation and Jahn–Teller distortion can induce Mn(II) dissolution and irreversible phase changes, greatly deteriorating the cycling life. Herein, a multi‐valence cobalt‐doped Mn3O4 (Co‐Mn3O4) with high capacity and reversibility, which lies in the multiple roles of the various states of doped cobalt, is reported. The Co2+ doping between the phase change product δ‐MnO2 layer acts as a “structural pillar,” and the Co4+ in the layer can increase the conductivity of Mn4+ and hold the high specific capacity. More importantly, Co ion (Co2+, Co3+) doping can effectively inhibit the Jahn–Teller effect in discharge products and promote ion diffusion. Using X‐ray absorption spectra results and density functional theory modelling, the multiple roles of doped cobalt are verified. Specifically, the Co‐Mn3O4 cathode shows high specific capacity of 362 mAh g–1 and energy density of 463.1 Wh kg–1 at 100 mA g–1. After 1100 cycles at 2.0 A g–1, the capacity retention rate reaches 80%. This work brings a new idea and approach to the design of highly reversible Mn‐based oxides cathode materials for Zn‐ion batteries.
A multivalent cobalt (Co2+, Co3+)‐doped Mn3O4 nanosheet is successfully constructed on carbon nanosheet arrays (Co‐Mn3O4/CNA) as a cathode material for aqueous zinc‐ion batteries. Cobalt ions with different valence states play important roles in the first charging phase change product and discharge products, thereby improving the electrochemical performance of the battery.</description><subject>Absorption spectra</subject><subject>Cathodes</subject><subject>Co doping</subject><subject>Cobalt</subject><subject>Density functional theory</subject><subject>Disproportionation</subject><subject>Doping</subject><subject>Electrode materials</subject><subject>Electron states</subject><subject>Flux density</subject><subject>Ion diffusion</subject><subject>Jahn-Teller effect</subject><subject>Manganese dioxide</subject><subject>manganese oxide</subject><subject>Manganese oxides</subject><subject>phase changes</subject><subject>Rechargeable batteries</subject><subject>Zinc</subject><subject>zinc‐ion batteries</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9UE1Lw0AQXUTBor16XvBY0s5-ZLs51lI_oLVg9eJl2SSTkpJm6yZBe_Mn-Bv9JW6pdC4zj3nMe_MIuWEwZAB8ZLHeDjlwAMFBnJEeU0xGSks4P82CX5J-02wglEwYCNEj2dTxwUgMRnLw-_3zguuusi3mdFZh1npX01UbMHUFXdSBsKSF83TV7dCndPLRoesa-l7WWdgtbL22NTZIl19ljvTOti36EptrclHYqsH-f78ib_ez1-ljNF8-PE0n82gdjItIs0yPYzvGJFNxynSSI88YiixXeaFwDFIG4yloplKbxokNjzIoJOSQap0qcUVuj3d33gVrTWs2rvN1kDRcas1YDAICKzmyPssK92bny631e8PAHII0hyDNKUgzmT0vTkj8Aa74aY4</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Ji, Jie</creator><creator>Wan, Houzhao</creator><creator>Zhang, Bao</creator><creator>Wang, Cong</creator><creator>Gan, Yi</creator><creator>Tan, Qiuyang</creator><creator>Wang, Nengze</creator><creator>Yao, Jia</creator><creator>Zheng, Zhaohan</creator><creator>Liang, Pei</creator><creator>Zhang, Jun</creator><creator>Wang, Hanbin</creator><creator>Tao, Li</creator><creator>Wang, Yi</creator><creator>Chao, Dongliang</creator><creator>Wang, Hao</creator><general>Wiley Subscription Services, Inc</general><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-4894-7653</orcidid></search><sort><creationdate>20210201</creationdate><title>Co2+/3+/4+‐Regulated Electron State of Mn‐O for Superb Aqueous Zinc‐Manganese Oxide Batteries</title><author>Ji, Jie ; Wan, Houzhao ; Zhang, Bao ; Wang, Cong ; Gan, Yi ; Tan, Qiuyang ; Wang, Nengze ; Yao, Jia ; Zheng, Zhaohan ; Liang, Pei ; Zhang, Jun ; Wang, Hanbin ; Tao, Li ; Wang, Yi ; Chao, Dongliang ; Wang, Hao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g2023-81c875a7e9c65b189de2c1e3cd6df6e7044000b0816bab59a20310f40d0b88b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Absorption spectra</topic><topic>Cathodes</topic><topic>Co doping</topic><topic>Cobalt</topic><topic>Density functional theory</topic><topic>Disproportionation</topic><topic>Doping</topic><topic>Electrode materials</topic><topic>Electron states</topic><topic>Flux density</topic><topic>Ion diffusion</topic><topic>Jahn-Teller effect</topic><topic>Manganese dioxide</topic><topic>manganese oxide</topic><topic>Manganese oxides</topic><topic>phase changes</topic><topic>Rechargeable batteries</topic><topic>Zinc</topic><topic>zinc‐ion batteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ji, Jie</creatorcontrib><creatorcontrib>Wan, Houzhao</creatorcontrib><creatorcontrib>Zhang, Bao</creatorcontrib><creatorcontrib>Wang, Cong</creatorcontrib><creatorcontrib>Gan, Yi</creatorcontrib><creatorcontrib>Tan, Qiuyang</creatorcontrib><creatorcontrib>Wang, Nengze</creatorcontrib><creatorcontrib>Yao, Jia</creatorcontrib><creatorcontrib>Zheng, Zhaohan</creatorcontrib><creatorcontrib>Liang, Pei</creatorcontrib><creatorcontrib>Zhang, Jun</creatorcontrib><creatorcontrib>Wang, Hanbin</creatorcontrib><creatorcontrib>Tao, Li</creatorcontrib><creatorcontrib>Wang, Yi</creatorcontrib><creatorcontrib>Chao, Dongliang</creatorcontrib><creatorcontrib>Wang, Hao</creatorcontrib><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ji, Jie</au><au>Wan, Houzhao</au><au>Zhang, Bao</au><au>Wang, Cong</au><au>Gan, Yi</au><au>Tan, Qiuyang</au><au>Wang, Nengze</au><au>Yao, Jia</au><au>Zheng, Zhaohan</au><au>Liang, Pei</au><au>Zhang, Jun</au><au>Wang, Hanbin</au><au>Tao, Li</au><au>Wang, Yi</au><au>Chao, Dongliang</au><au>Wang, Hao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Co2+/3+/4+‐Regulated Electron State of Mn‐O for Superb Aqueous Zinc‐Manganese Oxide Batteries</atitle><jtitle>Advanced energy materials</jtitle><date>2021-02-01</date><risdate>2021</risdate><volume>11</volume><issue>6</issue><epage>n/a</epage><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>Aqueous rechargeable Zn–MnOx batteries are very attractive due to their low‐cost and high energy density. However, Mn(III) disproportionation and Jahn–Teller distortion can induce Mn(II) dissolution and irreversible phase changes, greatly deteriorating the cycling life. Herein, a multi‐valence cobalt‐doped Mn3O4 (Co‐Mn3O4) with high capacity and reversibility, which lies in the multiple roles of the various states of doped cobalt, is reported. The Co2+ doping between the phase change product δ‐MnO2 layer acts as a “structural pillar,” and the Co4+ in the layer can increase the conductivity of Mn4+ and hold the high specific capacity. More importantly, Co ion (Co2+, Co3+) doping can effectively inhibit the Jahn–Teller effect in discharge products and promote ion diffusion. Using X‐ray absorption spectra results and density functional theory modelling, the multiple roles of doped cobalt are verified. Specifically, the Co‐Mn3O4 cathode shows high specific capacity of 362 mAh g–1 and energy density of 463.1 Wh kg–1 at 100 mA g–1. After 1100 cycles at 2.0 A g–1, the capacity retention rate reaches 80%. This work brings a new idea and approach to the design of highly reversible Mn‐based oxides cathode materials for Zn‐ion batteries.
A multivalent cobalt (Co2+, Co3+)‐doped Mn3O4 nanosheet is successfully constructed on carbon nanosheet arrays (Co‐Mn3O4/CNA) as a cathode material for aqueous zinc‐ion batteries. Cobalt ions with different valence states play important roles in the first charging phase change product and discharge products, thereby improving the electrochemical performance of the battery.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/aenm.202003203</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-4894-7653</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1614-6832 |
ispartof | Advanced energy materials, 2021-02, Vol.11 (6), p.n/a |
issn | 1614-6832 1614-6840 |
language | eng |
recordid | cdi_proquest_journals_2488115030 |
source | Wiley-Blackwell Journals |
subjects | Absorption spectra Cathodes Co doping Cobalt Density functional theory Disproportionation Doping Electrode materials Electron states Flux density Ion diffusion Jahn-Teller effect Manganese dioxide manganese oxide Manganese oxides phase changes Rechargeable batteries Zinc zinc‐ion batteries |
title | Co2+/3+/4+‐Regulated Electron State of Mn‐O for Superb Aqueous Zinc‐Manganese Oxide Batteries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T22%3A23%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Co2+/3+/4+%E2%80%90Regulated%20Electron%20State%20of%20Mn%E2%80%90O%20for%20Superb%20Aqueous%20Zinc%E2%80%90Manganese%20Oxide%20Batteries&rft.jtitle=Advanced%20energy%20materials&rft.au=Ji,%20Jie&rft.date=2021-02-01&rft.volume=11&rft.issue=6&rft.epage=n/a&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.202003203&rft_dat=%3Cproquest_wiley%3E2488115030%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2488115030&rft_id=info:pmid/&rfr_iscdi=true |