Hybrids nanocomposites based on a polymer blend (linear low‐density polyethylene/poly(ethylene‐co‐methyl acrylate) and carbonaceous fillers (graphene and carbon nanotube)

Interfacial or separate phase location of carbonaceous nanofillers (graphene and carbon nanotubes) in polymer blends with co‐continuous phases can lead to double percolation behavior, significantly increasing rheological and electrical properties. The prediction of the morphology and the location of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymer composites 2021-02, Vol.42 (2), p.661-677
Hauptverfasser: Nunes, Mário A. B. S., Matos, Bruno R., Silva, Glaura G., Ito, Edson N., Melo, Tomás J. A., Fechine, Guilhermino J. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 677
container_issue 2
container_start_page 661
container_title Polymer composites
container_volume 42
creator Nunes, Mário A. B. S.
Matos, Bruno R.
Silva, Glaura G.
Ito, Edson N.
Melo, Tomás J. A.
Fechine, Guilhermino J. M.
description Interfacial or separate phase location of carbonaceous nanofillers (graphene and carbon nanotubes) in polymer blends with co‐continuous phases can lead to double percolation behavior, significantly increasing rheological and electrical properties. The prediction of the morphology and the location of the nanofillers has been used as a tool to evaluate the proprieties of co‐continuous polymer blends. This work aims to highlight the superior conductivity levels achieved using a low amount of carbon‐based fillers, by the proper selection in a multiphase polymer matrix as a template for controlled dispersion and spatial distribution of the nanoparticles, offering a compromise between easy processability and enhanced performance. Here, two polymers (linear low‐density polyethylene [LLDPE] and ethylene‐co‐methylacrylate [EMA]) and their co‐continuous blend (LLDPE/EMA) were loaded with nanofillers (few‐layer graphene [FLG], few‐walled carbon nanotube [FWCNT]) via continuous melt mixing in twin‐screw extrusion, separate and simultaneously. It was observed that the addition of the nanofillers changed the co‐continuity of the blend, with the probable migration of the nanofillers from the EMA (hydrophilic) phase to the LLDPE (hydrophobic) phase. Rheological percolation occurred preferentially in blends containing FWCNT and FLG/FWCNT. Electrical conductivity was observed in all compositions, with higher electrical conductivity being noticed in hybrids. Co‐continuous blend morphology of linear low‐density polyethylene/poly(ethylene‐co‐methyl acrylate) was designed and subsequently confirmed. Rheological percolation occurred preferentially in blends containing few‐walled carbon nanotube (FWCNT) and few‐layer graphene/FWCNT. Electrical conductivity between 10−5 and 10−4 S/cm was achieved, without surfactant.
doi_str_mv 10.1002/pc.25856
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2488109975</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2488109975</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3646-1c4d20d4368a4e24598e1e356e6487c4acb9448ed183eeef87dca1918fe3771d3</originalsourceid><addsrcrecordid>eNp10cFKxDAQANAgCq6r4CcEvKyH7jZtmqZHWdQVFvSg55ImU7dLtqlJy9Kbn-Cn-E1-idlWwYuXGWZ4MwkMQpcknJMwjBaNnEcJT9gRmpCE8iBMWHaMJmGURgGPs_QUnTm39ZIwFk_Q56ovbKUcrkVtpNk1xlUtOFwIBwqbGgvcGN3vwOJCQ63wTFc1CIu12X-9fyiove8HA-2m9wQWh2L2W3kkjQ-7oYGFtL0WLVxj4ZdJYQtTCwmmc7istAbr8OzVimbjR_-Q4XttV8D1OTophXZw8ZOn6OXu9nm5CtaP9w_Lm3UgY0ZZQCRVUahozLigENEk40AgThgwylNJhSwySjkowmMAKHmqpCAZ4SXEaUpUPEVX497GmrcOXJtvTWdr_2QeUc5JmGVp4tVsVNIa5yyUeWOrnbB9TsL8cI-8kflwD0-Dke4rDf2_Ln9ajv4bBuGSnw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2488109975</pqid></control><display><type>article</type><title>Hybrids nanocomposites based on a polymer blend (linear low‐density polyethylene/poly(ethylene‐co‐methyl acrylate) and carbonaceous fillers (graphene and carbon nanotube)</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Nunes, Mário A. B. S. ; Matos, Bruno R. ; Silva, Glaura G. ; Ito, Edson N. ; Melo, Tomás J. A. ; Fechine, Guilhermino J. M.</creator><creatorcontrib>Nunes, Mário A. B. S. ; Matos, Bruno R. ; Silva, Glaura G. ; Ito, Edson N. ; Melo, Tomás J. A. ; Fechine, Guilhermino J. M.</creatorcontrib><description>Interfacial or separate phase location of carbonaceous nanofillers (graphene and carbon nanotubes) in polymer blends with co‐continuous phases can lead to double percolation behavior, significantly increasing rheological and electrical properties. The prediction of the morphology and the location of the nanofillers has been used as a tool to evaluate the proprieties of co‐continuous polymer blends. This work aims to highlight the superior conductivity levels achieved using a low amount of carbon‐based fillers, by the proper selection in a multiphase polymer matrix as a template for controlled dispersion and spatial distribution of the nanoparticles, offering a compromise between easy processability and enhanced performance. Here, two polymers (linear low‐density polyethylene [LLDPE] and ethylene‐co‐methylacrylate [EMA]) and their co‐continuous blend (LLDPE/EMA) were loaded with nanofillers (few‐layer graphene [FLG], few‐walled carbon nanotube [FWCNT]) via continuous melt mixing in twin‐screw extrusion, separate and simultaneously. It was observed that the addition of the nanofillers changed the co‐continuity of the blend, with the probable migration of the nanofillers from the EMA (hydrophilic) phase to the LLDPE (hydrophobic) phase. Rheological percolation occurred preferentially in blends containing FWCNT and FLG/FWCNT. Electrical conductivity was observed in all compositions, with higher electrical conductivity being noticed in hybrids. Co‐continuous blend morphology of linear low‐density polyethylene/poly(ethylene‐co‐methyl acrylate) was designed and subsequently confirmed. Rheological percolation occurred preferentially in blends containing few‐walled carbon nanotube (FWCNT) and few‐layer graphene/FWCNT. Electrical conductivity between 10−5 and 10−4 S/cm was achieved, without surfactant.</description><identifier>ISSN: 0272-8397</identifier><identifier>EISSN: 1548-0569</identifier><identifier>DOI: 10.1002/pc.25856</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Carbon ; Carbon fiber reinforced plastics ; Carbon nanotubes ; conducting polymers ; Continuous extrusion ; Density ; Electrical properties ; Electrical resistivity ; Fillers ; Graphene ; Low density polyethylenes ; Morphology ; Nanocomposites ; Nanoparticles ; nanotechnology ; Percolation ; Polyethylene ; Polymer blends ; Polymers ; Rheological properties ; Rheology ; Spatial distribution</subject><ispartof>Polymer composites, 2021-02, Vol.42 (2), p.661-677</ispartof><rights>2020 Society of Plastics Engineers</rights><rights>2021 Society of Plastics Engineers</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3646-1c4d20d4368a4e24598e1e356e6487c4acb9448ed183eeef87dca1918fe3771d3</citedby><cites>FETCH-LOGICAL-c3646-1c4d20d4368a4e24598e1e356e6487c4acb9448ed183eeef87dca1918fe3771d3</cites><orcidid>0000-0002-5879-6764 ; 0000-0002-5520-8488</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpc.25856$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpc.25856$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Nunes, Mário A. B. S.</creatorcontrib><creatorcontrib>Matos, Bruno R.</creatorcontrib><creatorcontrib>Silva, Glaura G.</creatorcontrib><creatorcontrib>Ito, Edson N.</creatorcontrib><creatorcontrib>Melo, Tomás J. A.</creatorcontrib><creatorcontrib>Fechine, Guilhermino J. M.</creatorcontrib><title>Hybrids nanocomposites based on a polymer blend (linear low‐density polyethylene/poly(ethylene‐co‐methyl acrylate) and carbonaceous fillers (graphene and carbon nanotube)</title><title>Polymer composites</title><description>Interfacial or separate phase location of carbonaceous nanofillers (graphene and carbon nanotubes) in polymer blends with co‐continuous phases can lead to double percolation behavior, significantly increasing rheological and electrical properties. The prediction of the morphology and the location of the nanofillers has been used as a tool to evaluate the proprieties of co‐continuous polymer blends. This work aims to highlight the superior conductivity levels achieved using a low amount of carbon‐based fillers, by the proper selection in a multiphase polymer matrix as a template for controlled dispersion and spatial distribution of the nanoparticles, offering a compromise between easy processability and enhanced performance. Here, two polymers (linear low‐density polyethylene [LLDPE] and ethylene‐co‐methylacrylate [EMA]) and their co‐continuous blend (LLDPE/EMA) were loaded with nanofillers (few‐layer graphene [FLG], few‐walled carbon nanotube [FWCNT]) via continuous melt mixing in twin‐screw extrusion, separate and simultaneously. It was observed that the addition of the nanofillers changed the co‐continuity of the blend, with the probable migration of the nanofillers from the EMA (hydrophilic) phase to the LLDPE (hydrophobic) phase. Rheological percolation occurred preferentially in blends containing FWCNT and FLG/FWCNT. Electrical conductivity was observed in all compositions, with higher electrical conductivity being noticed in hybrids. Co‐continuous blend morphology of linear low‐density polyethylene/poly(ethylene‐co‐methyl acrylate) was designed and subsequently confirmed. Rheological percolation occurred preferentially in blends containing few‐walled carbon nanotube (FWCNT) and few‐layer graphene/FWCNT. Electrical conductivity between 10−5 and 10−4 S/cm was achieved, without surfactant.</description><subject>Carbon</subject><subject>Carbon fiber reinforced plastics</subject><subject>Carbon nanotubes</subject><subject>conducting polymers</subject><subject>Continuous extrusion</subject><subject>Density</subject><subject>Electrical properties</subject><subject>Electrical resistivity</subject><subject>Fillers</subject><subject>Graphene</subject><subject>Low density polyethylenes</subject><subject>Morphology</subject><subject>Nanocomposites</subject><subject>Nanoparticles</subject><subject>nanotechnology</subject><subject>Percolation</subject><subject>Polyethylene</subject><subject>Polymer blends</subject><subject>Polymers</subject><subject>Rheological properties</subject><subject>Rheology</subject><subject>Spatial distribution</subject><issn>0272-8397</issn><issn>1548-0569</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp10cFKxDAQANAgCq6r4CcEvKyH7jZtmqZHWdQVFvSg55ImU7dLtqlJy9Kbn-Cn-E1-idlWwYuXGWZ4MwkMQpcknJMwjBaNnEcJT9gRmpCE8iBMWHaMJmGURgGPs_QUnTm39ZIwFk_Q56ovbKUcrkVtpNk1xlUtOFwIBwqbGgvcGN3vwOJCQ63wTFc1CIu12X-9fyiove8HA-2m9wQWh2L2W3kkjQ-7oYGFtL0WLVxj4ZdJYQtTCwmmc7istAbr8OzVimbjR_-Q4XttV8D1OTophXZw8ZOn6OXu9nm5CtaP9w_Lm3UgY0ZZQCRVUahozLigENEk40AgThgwylNJhSwySjkowmMAKHmqpCAZ4SXEaUpUPEVX497GmrcOXJtvTWdr_2QeUc5JmGVp4tVsVNIa5yyUeWOrnbB9TsL8cI-8kflwD0-Dke4rDf2_Ln9ajv4bBuGSnw</recordid><startdate>202102</startdate><enddate>202102</enddate><creator>Nunes, Mário A. B. S.</creator><creator>Matos, Bruno R.</creator><creator>Silva, Glaura G.</creator><creator>Ito, Edson N.</creator><creator>Melo, Tomás J. A.</creator><creator>Fechine, Guilhermino J. M.</creator><general>John Wiley &amp; Sons, Inc</general><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-5879-6764</orcidid><orcidid>https://orcid.org/0000-0002-5520-8488</orcidid></search><sort><creationdate>202102</creationdate><title>Hybrids nanocomposites based on a polymer blend (linear low‐density polyethylene/poly(ethylene‐co‐methyl acrylate) and carbonaceous fillers (graphene and carbon nanotube)</title><author>Nunes, Mário A. B. S. ; Matos, Bruno R. ; Silva, Glaura G. ; Ito, Edson N. ; Melo, Tomás J. A. ; Fechine, Guilhermino J. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3646-1c4d20d4368a4e24598e1e356e6487c4acb9448ed183eeef87dca1918fe3771d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Carbon</topic><topic>Carbon fiber reinforced plastics</topic><topic>Carbon nanotubes</topic><topic>conducting polymers</topic><topic>Continuous extrusion</topic><topic>Density</topic><topic>Electrical properties</topic><topic>Electrical resistivity</topic><topic>Fillers</topic><topic>Graphene</topic><topic>Low density polyethylenes</topic><topic>Morphology</topic><topic>Nanocomposites</topic><topic>Nanoparticles</topic><topic>nanotechnology</topic><topic>Percolation</topic><topic>Polyethylene</topic><topic>Polymer blends</topic><topic>Polymers</topic><topic>Rheological properties</topic><topic>Rheology</topic><topic>Spatial distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nunes, Mário A. B. S.</creatorcontrib><creatorcontrib>Matos, Bruno R.</creatorcontrib><creatorcontrib>Silva, Glaura G.</creatorcontrib><creatorcontrib>Ito, Edson N.</creatorcontrib><creatorcontrib>Melo, Tomás J. A.</creatorcontrib><creatorcontrib>Fechine, Guilhermino J. M.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Polymer composites</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nunes, Mário A. B. S.</au><au>Matos, Bruno R.</au><au>Silva, Glaura G.</au><au>Ito, Edson N.</au><au>Melo, Tomás J. A.</au><au>Fechine, Guilhermino J. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hybrids nanocomposites based on a polymer blend (linear low‐density polyethylene/poly(ethylene‐co‐methyl acrylate) and carbonaceous fillers (graphene and carbon nanotube)</atitle><jtitle>Polymer composites</jtitle><date>2021-02</date><risdate>2021</risdate><volume>42</volume><issue>2</issue><spage>661</spage><epage>677</epage><pages>661-677</pages><issn>0272-8397</issn><eissn>1548-0569</eissn><abstract>Interfacial or separate phase location of carbonaceous nanofillers (graphene and carbon nanotubes) in polymer blends with co‐continuous phases can lead to double percolation behavior, significantly increasing rheological and electrical properties. The prediction of the morphology and the location of the nanofillers has been used as a tool to evaluate the proprieties of co‐continuous polymer blends. This work aims to highlight the superior conductivity levels achieved using a low amount of carbon‐based fillers, by the proper selection in a multiphase polymer matrix as a template for controlled dispersion and spatial distribution of the nanoparticles, offering a compromise between easy processability and enhanced performance. Here, two polymers (linear low‐density polyethylene [LLDPE] and ethylene‐co‐methylacrylate [EMA]) and their co‐continuous blend (LLDPE/EMA) were loaded with nanofillers (few‐layer graphene [FLG], few‐walled carbon nanotube [FWCNT]) via continuous melt mixing in twin‐screw extrusion, separate and simultaneously. It was observed that the addition of the nanofillers changed the co‐continuity of the blend, with the probable migration of the nanofillers from the EMA (hydrophilic) phase to the LLDPE (hydrophobic) phase. Rheological percolation occurred preferentially in blends containing FWCNT and FLG/FWCNT. Electrical conductivity was observed in all compositions, with higher electrical conductivity being noticed in hybrids. Co‐continuous blend morphology of linear low‐density polyethylene/poly(ethylene‐co‐methyl acrylate) was designed and subsequently confirmed. Rheological percolation occurred preferentially in blends containing few‐walled carbon nanotube (FWCNT) and few‐layer graphene/FWCNT. Electrical conductivity between 10−5 and 10−4 S/cm was achieved, without surfactant.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/pc.25856</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-5879-6764</orcidid><orcidid>https://orcid.org/0000-0002-5520-8488</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0272-8397
ispartof Polymer composites, 2021-02, Vol.42 (2), p.661-677
issn 0272-8397
1548-0569
language eng
recordid cdi_proquest_journals_2488109975
source Wiley Online Library Journals Frontfile Complete
subjects Carbon
Carbon fiber reinforced plastics
Carbon nanotubes
conducting polymers
Continuous extrusion
Density
Electrical properties
Electrical resistivity
Fillers
Graphene
Low density polyethylenes
Morphology
Nanocomposites
Nanoparticles
nanotechnology
Percolation
Polyethylene
Polymer blends
Polymers
Rheological properties
Rheology
Spatial distribution
title Hybrids nanocomposites based on a polymer blend (linear low‐density polyethylene/poly(ethylene‐co‐methyl acrylate) and carbonaceous fillers (graphene and carbon nanotube)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T07%3A51%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hybrids%20nanocomposites%20based%20on%20a%20polymer%20blend%20(linear%20low%E2%80%90density%20polyethylene/poly(ethylene%E2%80%90co%E2%80%90methyl%20acrylate)%20and%20carbonaceous%20fillers%20(graphene%20and%20carbon%20nanotube)&rft.jtitle=Polymer%20composites&rft.au=Nunes,%20M%C3%A1rio%20A.%20B.%20S.&rft.date=2021-02&rft.volume=42&rft.issue=2&rft.spage=661&rft.epage=677&rft.pages=661-677&rft.issn=0272-8397&rft.eissn=1548-0569&rft_id=info:doi/10.1002/pc.25856&rft_dat=%3Cproquest_cross%3E2488109975%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2488109975&rft_id=info:pmid/&rfr_iscdi=true