A dynamic reconfigurable nonlinear energy sink

Traditional nonlinear energy absorbers, such as the nonlinear energy sink (NES) and negative stiffness vibration isolators, are not configurable. Therefore, when their structures have been fabricated, their performances cannot be tunable in real time, which prevents the application of these devices...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of sound and vibration 2021-03, Vol.494, p.115629, Article 115629
Hauptverfasser: Yang, Tianzhi, Hou, Shuai, Qin, Zhao-Hong, Ding, Qian, Chen, Li-Qun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 115629
container_title Journal of sound and vibration
container_volume 494
creator Yang, Tianzhi
Hou, Shuai
Qin, Zhao-Hong
Ding, Qian
Chen, Li-Qun
description Traditional nonlinear energy absorbers, such as the nonlinear energy sink (NES) and negative stiffness vibration isolators, are not configurable. Therefore, when their structures have been fabricated, their performances cannot be tunable in real time, which prevents the application of these devices over a wider range external forcing amplitude. In this paper, we present a novel energy absorber that essentially offers nonlinearity and a time-dependent inertial mass. The newly designed mass is engineered using a three-body system, which consists of a primary mass and two additional masses that rotate along a circular orbit and offer an additional degree of freedom for dynamic modulation of the absorber. The resonant frequency can be modulated dynamically by using the angular velocity to trigger a controlled target energy transfer (TET). In particular, it is found that the maximum energy absorption limit can be overcome and that a much lower threshold for triggering of TET is supported. These results provide a new framework for the design of nonlinear vibration isolators and absorbers.
doi_str_mv 10.1016/j.jsv.2020.115629
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2488091965</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022460X20304600</els_id><sourcerecordid>2488091965</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-b114c012aee1d054ed94ada668c370d7d3d9395e27d75b634a70f55e90f68da33</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKs_wNuC510nn7vBUylahYIXBW8hTWZL1jZbk7bQf--W9expGHifd4aHkHsKFQWqHruqy8eKARt2KhXTF2RCQcuykaq5JBMAxkqh4Oua3OTcAYAWXExINSv8KdptcEVC18c2rA_JrjZYxD5uQkSbCoyY1qcih_h9S65au8l49zen5PPl-WP-Wi7fF2_z2bJ0nMl9uaJUOKDMIlIPUqDXwnqrVON4Db723GuuJbLa13KluLA1tFKihlY13nI-JQ9j7y71PwfMe9P1hxSHk4aJpgFNtZJDio4pl_qcE7Zml8LWppOhYM5aTGcGLeasxYxaBuZpZHB4_xgwmewCRoc-DAL2xvfhH_oXGuZpcg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2488091965</pqid></control><display><type>article</type><title>A dynamic reconfigurable nonlinear energy sink</title><source>Elsevier ScienceDirect Journals</source><creator>Yang, Tianzhi ; Hou, Shuai ; Qin, Zhao-Hong ; Ding, Qian ; Chen, Li-Qun</creator><creatorcontrib>Yang, Tianzhi ; Hou, Shuai ; Qin, Zhao-Hong ; Ding, Qian ; Chen, Li-Qun</creatorcontrib><description>Traditional nonlinear energy absorbers, such as the nonlinear energy sink (NES) and negative stiffness vibration isolators, are not configurable. Therefore, when their structures have been fabricated, their performances cannot be tunable in real time, which prevents the application of these devices over a wider range external forcing amplitude. In this paper, we present a novel energy absorber that essentially offers nonlinearity and a time-dependent inertial mass. The newly designed mass is engineered using a three-body system, which consists of a primary mass and two additional masses that rotate along a circular orbit and offer an additional degree of freedom for dynamic modulation of the absorber. The resonant frequency can be modulated dynamically by using the angular velocity to trigger a controlled target energy transfer (TET). In particular, it is found that the maximum energy absorption limit can be overcome and that a much lower threshold for triggering of TET is supported. These results provide a new framework for the design of nonlinear vibration isolators and absorbers.</description><identifier>ISSN: 0022-460X</identifier><identifier>EISSN: 1095-8568</identifier><identifier>DOI: 10.1016/j.jsv.2020.115629</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>Absorbers ; Angular velocity ; Circular orbits ; Dynamic modulation ; Energy absorption ; Energy transfer ; Heat transfer ; Inertia ; Nonlinear energy sink (NES) ; Nonlinear systems ; Nonlinearity ; Resonance capture ; Resonant frequencies ; Stiffness ; Time dependence ; Time-varying mass ; Vibration ; Vibration isolators ; Vibration reduction</subject><ispartof>Journal of sound and vibration, 2021-03, Vol.494, p.115629, Article 115629</ispartof><rights>2020</rights><rights>Copyright Elsevier Science Ltd. Mar 3, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-b114c012aee1d054ed94ada668c370d7d3d9395e27d75b634a70f55e90f68da33</citedby><cites>FETCH-LOGICAL-c325t-b114c012aee1d054ed94ada668c370d7d3d9395e27d75b634a70f55e90f68da33</cites><orcidid>0000-0002-3694-0833</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0022460X20304600$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Yang, Tianzhi</creatorcontrib><creatorcontrib>Hou, Shuai</creatorcontrib><creatorcontrib>Qin, Zhao-Hong</creatorcontrib><creatorcontrib>Ding, Qian</creatorcontrib><creatorcontrib>Chen, Li-Qun</creatorcontrib><title>A dynamic reconfigurable nonlinear energy sink</title><title>Journal of sound and vibration</title><description>Traditional nonlinear energy absorbers, such as the nonlinear energy sink (NES) and negative stiffness vibration isolators, are not configurable. Therefore, when their structures have been fabricated, their performances cannot be tunable in real time, which prevents the application of these devices over a wider range external forcing amplitude. In this paper, we present a novel energy absorber that essentially offers nonlinearity and a time-dependent inertial mass. The newly designed mass is engineered using a three-body system, which consists of a primary mass and two additional masses that rotate along a circular orbit and offer an additional degree of freedom for dynamic modulation of the absorber. The resonant frequency can be modulated dynamically by using the angular velocity to trigger a controlled target energy transfer (TET). In particular, it is found that the maximum energy absorption limit can be overcome and that a much lower threshold for triggering of TET is supported. These results provide a new framework for the design of nonlinear vibration isolators and absorbers.</description><subject>Absorbers</subject><subject>Angular velocity</subject><subject>Circular orbits</subject><subject>Dynamic modulation</subject><subject>Energy absorption</subject><subject>Energy transfer</subject><subject>Heat transfer</subject><subject>Inertia</subject><subject>Nonlinear energy sink (NES)</subject><subject>Nonlinear systems</subject><subject>Nonlinearity</subject><subject>Resonance capture</subject><subject>Resonant frequencies</subject><subject>Stiffness</subject><subject>Time dependence</subject><subject>Time-varying mass</subject><subject>Vibration</subject><subject>Vibration isolators</subject><subject>Vibration reduction</subject><issn>0022-460X</issn><issn>1095-8568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKs_wNuC510nn7vBUylahYIXBW8hTWZL1jZbk7bQf--W9expGHifd4aHkHsKFQWqHruqy8eKARt2KhXTF2RCQcuykaq5JBMAxkqh4Oua3OTcAYAWXExINSv8KdptcEVC18c2rA_JrjZYxD5uQkSbCoyY1qcih_h9S65au8l49zen5PPl-WP-Wi7fF2_z2bJ0nMl9uaJUOKDMIlIPUqDXwnqrVON4Db723GuuJbLa13KluLA1tFKihlY13nI-JQ9j7y71PwfMe9P1hxSHk4aJpgFNtZJDio4pl_qcE7Zml8LWppOhYM5aTGcGLeasxYxaBuZpZHB4_xgwmewCRoc-DAL2xvfhH_oXGuZpcg</recordid><startdate>20210303</startdate><enddate>20210303</enddate><creator>Yang, Tianzhi</creator><creator>Hou, Shuai</creator><creator>Qin, Zhao-Hong</creator><creator>Ding, Qian</creator><creator>Chen, Li-Qun</creator><general>Elsevier Ltd</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0002-3694-0833</orcidid></search><sort><creationdate>20210303</creationdate><title>A dynamic reconfigurable nonlinear energy sink</title><author>Yang, Tianzhi ; Hou, Shuai ; Qin, Zhao-Hong ; Ding, Qian ; Chen, Li-Qun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-b114c012aee1d054ed94ada668c370d7d3d9395e27d75b634a70f55e90f68da33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Absorbers</topic><topic>Angular velocity</topic><topic>Circular orbits</topic><topic>Dynamic modulation</topic><topic>Energy absorption</topic><topic>Energy transfer</topic><topic>Heat transfer</topic><topic>Inertia</topic><topic>Nonlinear energy sink (NES)</topic><topic>Nonlinear systems</topic><topic>Nonlinearity</topic><topic>Resonance capture</topic><topic>Resonant frequencies</topic><topic>Stiffness</topic><topic>Time dependence</topic><topic>Time-varying mass</topic><topic>Vibration</topic><topic>Vibration isolators</topic><topic>Vibration reduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Tianzhi</creatorcontrib><creatorcontrib>Hou, Shuai</creatorcontrib><creatorcontrib>Qin, Zhao-Hong</creatorcontrib><creatorcontrib>Ding, Qian</creatorcontrib><creatorcontrib>Chen, Li-Qun</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of sound and vibration</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Tianzhi</au><au>Hou, Shuai</au><au>Qin, Zhao-Hong</au><au>Ding, Qian</au><au>Chen, Li-Qun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A dynamic reconfigurable nonlinear energy sink</atitle><jtitle>Journal of sound and vibration</jtitle><date>2021-03-03</date><risdate>2021</risdate><volume>494</volume><spage>115629</spage><pages>115629-</pages><artnum>115629</artnum><issn>0022-460X</issn><eissn>1095-8568</eissn><abstract>Traditional nonlinear energy absorbers, such as the nonlinear energy sink (NES) and negative stiffness vibration isolators, are not configurable. Therefore, when their structures have been fabricated, their performances cannot be tunable in real time, which prevents the application of these devices over a wider range external forcing amplitude. In this paper, we present a novel energy absorber that essentially offers nonlinearity and a time-dependent inertial mass. The newly designed mass is engineered using a three-body system, which consists of a primary mass and two additional masses that rotate along a circular orbit and offer an additional degree of freedom for dynamic modulation of the absorber. The resonant frequency can be modulated dynamically by using the angular velocity to trigger a controlled target energy transfer (TET). In particular, it is found that the maximum energy absorption limit can be overcome and that a much lower threshold for triggering of TET is supported. These results provide a new framework for the design of nonlinear vibration isolators and absorbers.</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.jsv.2020.115629</doi><orcidid>https://orcid.org/0000-0002-3694-0833</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-460X
ispartof Journal of sound and vibration, 2021-03, Vol.494, p.115629, Article 115629
issn 0022-460X
1095-8568
language eng
recordid cdi_proquest_journals_2488091965
source Elsevier ScienceDirect Journals
subjects Absorbers
Angular velocity
Circular orbits
Dynamic modulation
Energy absorption
Energy transfer
Heat transfer
Inertia
Nonlinear energy sink (NES)
Nonlinear systems
Nonlinearity
Resonance capture
Resonant frequencies
Stiffness
Time dependence
Time-varying mass
Vibration
Vibration isolators
Vibration reduction
title A dynamic reconfigurable nonlinear energy sink
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T04%3A46%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20dynamic%20reconfigurable%20nonlinear%20energy%20sink&rft.jtitle=Journal%20of%20sound%20and%20vibration&rft.au=Yang,%20Tianzhi&rft.date=2021-03-03&rft.volume=494&rft.spage=115629&rft.pages=115629-&rft.artnum=115629&rft.issn=0022-460X&rft.eissn=1095-8568&rft_id=info:doi/10.1016/j.jsv.2020.115629&rft_dat=%3Cproquest_cross%3E2488091965%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2488091965&rft_id=info:pmid/&rft_els_id=S0022460X20304600&rfr_iscdi=true