A dynamic reconfigurable nonlinear energy sink
Traditional nonlinear energy absorbers, such as the nonlinear energy sink (NES) and negative stiffness vibration isolators, are not configurable. Therefore, when their structures have been fabricated, their performances cannot be tunable in real time, which prevents the application of these devices...
Gespeichert in:
Veröffentlicht in: | Journal of sound and vibration 2021-03, Vol.494, p.115629, Article 115629 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 115629 |
container_title | Journal of sound and vibration |
container_volume | 494 |
creator | Yang, Tianzhi Hou, Shuai Qin, Zhao-Hong Ding, Qian Chen, Li-Qun |
description | Traditional nonlinear energy absorbers, such as the nonlinear energy sink (NES) and negative stiffness vibration isolators, are not configurable. Therefore, when their structures have been fabricated, their performances cannot be tunable in real time, which prevents the application of these devices over a wider range external forcing amplitude. In this paper, we present a novel energy absorber that essentially offers nonlinearity and a time-dependent inertial mass. The newly designed mass is engineered using a three-body system, which consists of a primary mass and two additional masses that rotate along a circular orbit and offer an additional degree of freedom for dynamic modulation of the absorber. The resonant frequency can be modulated dynamically by using the angular velocity to trigger a controlled target energy transfer (TET). In particular, it is found that the maximum energy absorption limit can be overcome and that a much lower threshold for triggering of TET is supported. These results provide a new framework for the design of nonlinear vibration isolators and absorbers. |
doi_str_mv | 10.1016/j.jsv.2020.115629 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2488091965</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022460X20304600</els_id><sourcerecordid>2488091965</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-b114c012aee1d054ed94ada668c370d7d3d9395e27d75b634a70f55e90f68da33</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKs_wNuC510nn7vBUylahYIXBW8hTWZL1jZbk7bQf--W9expGHifd4aHkHsKFQWqHruqy8eKARt2KhXTF2RCQcuykaq5JBMAxkqh4Oua3OTcAYAWXExINSv8KdptcEVC18c2rA_JrjZYxD5uQkSbCoyY1qcih_h9S65au8l49zen5PPl-WP-Wi7fF2_z2bJ0nMl9uaJUOKDMIlIPUqDXwnqrVON4Db723GuuJbLa13KluLA1tFKihlY13nI-JQ9j7y71PwfMe9P1hxSHk4aJpgFNtZJDio4pl_qcE7Zml8LWppOhYM5aTGcGLeasxYxaBuZpZHB4_xgwmewCRoc-DAL2xvfhH_oXGuZpcg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2488091965</pqid></control><display><type>article</type><title>A dynamic reconfigurable nonlinear energy sink</title><source>Elsevier ScienceDirect Journals</source><creator>Yang, Tianzhi ; Hou, Shuai ; Qin, Zhao-Hong ; Ding, Qian ; Chen, Li-Qun</creator><creatorcontrib>Yang, Tianzhi ; Hou, Shuai ; Qin, Zhao-Hong ; Ding, Qian ; Chen, Li-Qun</creatorcontrib><description>Traditional nonlinear energy absorbers, such as the nonlinear energy sink (NES) and negative stiffness vibration isolators, are not configurable. Therefore, when their structures have been fabricated, their performances cannot be tunable in real time, which prevents the application of these devices over a wider range external forcing amplitude. In this paper, we present a novel energy absorber that essentially offers nonlinearity and a time-dependent inertial mass. The newly designed mass is engineered using a three-body system, which consists of a primary mass and two additional masses that rotate along a circular orbit and offer an additional degree of freedom for dynamic modulation of the absorber. The resonant frequency can be modulated dynamically by using the angular velocity to trigger a controlled target energy transfer (TET). In particular, it is found that the maximum energy absorption limit can be overcome and that a much lower threshold for triggering of TET is supported. These results provide a new framework for the design of nonlinear vibration isolators and absorbers.</description><identifier>ISSN: 0022-460X</identifier><identifier>EISSN: 1095-8568</identifier><identifier>DOI: 10.1016/j.jsv.2020.115629</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>Absorbers ; Angular velocity ; Circular orbits ; Dynamic modulation ; Energy absorption ; Energy transfer ; Heat transfer ; Inertia ; Nonlinear energy sink (NES) ; Nonlinear systems ; Nonlinearity ; Resonance capture ; Resonant frequencies ; Stiffness ; Time dependence ; Time-varying mass ; Vibration ; Vibration isolators ; Vibration reduction</subject><ispartof>Journal of sound and vibration, 2021-03, Vol.494, p.115629, Article 115629</ispartof><rights>2020</rights><rights>Copyright Elsevier Science Ltd. Mar 3, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-b114c012aee1d054ed94ada668c370d7d3d9395e27d75b634a70f55e90f68da33</citedby><cites>FETCH-LOGICAL-c325t-b114c012aee1d054ed94ada668c370d7d3d9395e27d75b634a70f55e90f68da33</cites><orcidid>0000-0002-3694-0833</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0022460X20304600$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Yang, Tianzhi</creatorcontrib><creatorcontrib>Hou, Shuai</creatorcontrib><creatorcontrib>Qin, Zhao-Hong</creatorcontrib><creatorcontrib>Ding, Qian</creatorcontrib><creatorcontrib>Chen, Li-Qun</creatorcontrib><title>A dynamic reconfigurable nonlinear energy sink</title><title>Journal of sound and vibration</title><description>Traditional nonlinear energy absorbers, such as the nonlinear energy sink (NES) and negative stiffness vibration isolators, are not configurable. Therefore, when their structures have been fabricated, their performances cannot be tunable in real time, which prevents the application of these devices over a wider range external forcing amplitude. In this paper, we present a novel energy absorber that essentially offers nonlinearity and a time-dependent inertial mass. The newly designed mass is engineered using a three-body system, which consists of a primary mass and two additional masses that rotate along a circular orbit and offer an additional degree of freedom for dynamic modulation of the absorber. The resonant frequency can be modulated dynamically by using the angular velocity to trigger a controlled target energy transfer (TET). In particular, it is found that the maximum energy absorption limit can be overcome and that a much lower threshold for triggering of TET is supported. These results provide a new framework for the design of nonlinear vibration isolators and absorbers.</description><subject>Absorbers</subject><subject>Angular velocity</subject><subject>Circular orbits</subject><subject>Dynamic modulation</subject><subject>Energy absorption</subject><subject>Energy transfer</subject><subject>Heat transfer</subject><subject>Inertia</subject><subject>Nonlinear energy sink (NES)</subject><subject>Nonlinear systems</subject><subject>Nonlinearity</subject><subject>Resonance capture</subject><subject>Resonant frequencies</subject><subject>Stiffness</subject><subject>Time dependence</subject><subject>Time-varying mass</subject><subject>Vibration</subject><subject>Vibration isolators</subject><subject>Vibration reduction</subject><issn>0022-460X</issn><issn>1095-8568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKs_wNuC510nn7vBUylahYIXBW8hTWZL1jZbk7bQf--W9expGHifd4aHkHsKFQWqHruqy8eKARt2KhXTF2RCQcuykaq5JBMAxkqh4Oua3OTcAYAWXExINSv8KdptcEVC18c2rA_JrjZYxD5uQkSbCoyY1qcih_h9S65au8l49zen5PPl-WP-Wi7fF2_z2bJ0nMl9uaJUOKDMIlIPUqDXwnqrVON4Db723GuuJbLa13KluLA1tFKihlY13nI-JQ9j7y71PwfMe9P1hxSHk4aJpgFNtZJDio4pl_qcE7Zml8LWppOhYM5aTGcGLeasxYxaBuZpZHB4_xgwmewCRoc-DAL2xvfhH_oXGuZpcg</recordid><startdate>20210303</startdate><enddate>20210303</enddate><creator>Yang, Tianzhi</creator><creator>Hou, Shuai</creator><creator>Qin, Zhao-Hong</creator><creator>Ding, Qian</creator><creator>Chen, Li-Qun</creator><general>Elsevier Ltd</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0002-3694-0833</orcidid></search><sort><creationdate>20210303</creationdate><title>A dynamic reconfigurable nonlinear energy sink</title><author>Yang, Tianzhi ; Hou, Shuai ; Qin, Zhao-Hong ; Ding, Qian ; Chen, Li-Qun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-b114c012aee1d054ed94ada668c370d7d3d9395e27d75b634a70f55e90f68da33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Absorbers</topic><topic>Angular velocity</topic><topic>Circular orbits</topic><topic>Dynamic modulation</topic><topic>Energy absorption</topic><topic>Energy transfer</topic><topic>Heat transfer</topic><topic>Inertia</topic><topic>Nonlinear energy sink (NES)</topic><topic>Nonlinear systems</topic><topic>Nonlinearity</topic><topic>Resonance capture</topic><topic>Resonant frequencies</topic><topic>Stiffness</topic><topic>Time dependence</topic><topic>Time-varying mass</topic><topic>Vibration</topic><topic>Vibration isolators</topic><topic>Vibration reduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Tianzhi</creatorcontrib><creatorcontrib>Hou, Shuai</creatorcontrib><creatorcontrib>Qin, Zhao-Hong</creatorcontrib><creatorcontrib>Ding, Qian</creatorcontrib><creatorcontrib>Chen, Li-Qun</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of sound and vibration</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Tianzhi</au><au>Hou, Shuai</au><au>Qin, Zhao-Hong</au><au>Ding, Qian</au><au>Chen, Li-Qun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A dynamic reconfigurable nonlinear energy sink</atitle><jtitle>Journal of sound and vibration</jtitle><date>2021-03-03</date><risdate>2021</risdate><volume>494</volume><spage>115629</spage><pages>115629-</pages><artnum>115629</artnum><issn>0022-460X</issn><eissn>1095-8568</eissn><abstract>Traditional nonlinear energy absorbers, such as the nonlinear energy sink (NES) and negative stiffness vibration isolators, are not configurable. Therefore, when their structures have been fabricated, their performances cannot be tunable in real time, which prevents the application of these devices over a wider range external forcing amplitude. In this paper, we present a novel energy absorber that essentially offers nonlinearity and a time-dependent inertial mass. The newly designed mass is engineered using a three-body system, which consists of a primary mass and two additional masses that rotate along a circular orbit and offer an additional degree of freedom for dynamic modulation of the absorber. The resonant frequency can be modulated dynamically by using the angular velocity to trigger a controlled target energy transfer (TET). In particular, it is found that the maximum energy absorption limit can be overcome and that a much lower threshold for triggering of TET is supported. These results provide a new framework for the design of nonlinear vibration isolators and absorbers.</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.jsv.2020.115629</doi><orcidid>https://orcid.org/0000-0002-3694-0833</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-460X |
ispartof | Journal of sound and vibration, 2021-03, Vol.494, p.115629, Article 115629 |
issn | 0022-460X 1095-8568 |
language | eng |
recordid | cdi_proquest_journals_2488091965 |
source | Elsevier ScienceDirect Journals |
subjects | Absorbers Angular velocity Circular orbits Dynamic modulation Energy absorption Energy transfer Heat transfer Inertia Nonlinear energy sink (NES) Nonlinear systems Nonlinearity Resonance capture Resonant frequencies Stiffness Time dependence Time-varying mass Vibration Vibration isolators Vibration reduction |
title | A dynamic reconfigurable nonlinear energy sink |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T04%3A46%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20dynamic%20reconfigurable%20nonlinear%20energy%20sink&rft.jtitle=Journal%20of%20sound%20and%20vibration&rft.au=Yang,%20Tianzhi&rft.date=2021-03-03&rft.volume=494&rft.spage=115629&rft.pages=115629-&rft.artnum=115629&rft.issn=0022-460X&rft.eissn=1095-8568&rft_id=info:doi/10.1016/j.jsv.2020.115629&rft_dat=%3Cproquest_cross%3E2488091965%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2488091965&rft_id=info:pmid/&rft_els_id=S0022460X20304600&rfr_iscdi=true |