Modeling nucleus accumbens

Nucleus accumbens is part of the neural structures required for reward based learning and cognitive processing of motivation. Understanding its cellular dynamics and its role in basal ganglia circuits is important not only in diagnosing behavioral disorders and psychiatric problems as addiction and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational neuroscience 2021-02, Vol.49 (1), p.21-35
Hauptverfasser: Elibol Rahmi, Şengör, Neslihan Serap
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 35
container_issue 1
container_start_page 21
container_title Journal of computational neuroscience
container_volume 49
creator Elibol Rahmi
Şengör, Neslihan Serap
description Nucleus accumbens is part of the neural structures required for reward based learning and cognitive processing of motivation. Understanding its cellular dynamics and its role in basal ganglia circuits is important not only in diagnosing behavioral disorders and psychiatric problems as addiction and depression but also for developing therapeutic treatments for them. Building a computational model would expand our comprehension of nucleus accumbens. In this work, we are focusing on establishing a model of nucleus accumbens which has not been considered as much as dorsal striatum in computational neuroscience. We will begin by modeling the behavior of single cells and then build a holistic model of nucleus accumbens considering the effect of synaptic currents. We will verify the validity of the model by showing the consistency of simulation results with the empirical data. Furthermore, the simulation results reveal the joint effect of cortical stimulation and dopaminergic modulation on the activity of medium spiny neurons. This effect differentiates with the type of dopamine receptors.
doi_str_mv 10.1007/s10827-020-00769-y
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2488036788</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2488036788</sourcerecordid><originalsourceid>FETCH-proquest_journals_24880367883</originalsourceid><addsrcrecordid>eNqNirsOgjAUQG-MJuLjB5hInKu3rbSX2Whc3NgJ1mokWJRrB_9eBj_A6eTkHIBU4loi2g1LJGUFKhSDmkJ8RpDI3GphyOoxJFioQuRa6inMmBtEJCsxgfTUXXx7D7csRNf6yFntXHycfeAFTK51y3754xxWh325O4pn372i53fVdLEPQ6rUlgi1sUT6v-sLbqoyHw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2488036788</pqid></control><display><type>article</type><title>Modeling nucleus accumbens</title><source>SpringerLink Journals - AutoHoldings</source><creator>Elibol Rahmi ; Şengör, Neslihan Serap</creator><creatorcontrib>Elibol Rahmi ; Şengör, Neslihan Serap</creatorcontrib><description>Nucleus accumbens is part of the neural structures required for reward based learning and cognitive processing of motivation. Understanding its cellular dynamics and its role in basal ganglia circuits is important not only in diagnosing behavioral disorders and psychiatric problems as addiction and depression but also for developing therapeutic treatments for them. Building a computational model would expand our comprehension of nucleus accumbens. In this work, we are focusing on establishing a model of nucleus accumbens which has not been considered as much as dorsal striatum in computational neuroscience. We will begin by modeling the behavior of single cells and then build a holistic model of nucleus accumbens considering the effect of synaptic currents. We will verify the validity of the model by showing the consistency of simulation results with the empirical data. Furthermore, the simulation results reveal the joint effect of cortical stimulation and dopaminergic modulation on the activity of medium spiny neurons. This effect differentiates with the type of dopamine receptors.</description><identifier>ISSN: 0929-5313</identifier><identifier>EISSN: 1573-6873</identifier><identifier>DOI: 10.1007/s10827-020-00769-y</identifier><language>eng</language><publisher>New York: Springer Nature B.V</publisher><subject>Addictions ; Animal behavior ; Animal memory ; Animal training ; Basal ganglia ; Caudate-putamen ; Cognitive ability ; Computational neuroscience ; Dopamine ; Dopamine receptors ; Ganglia ; Information processing ; Mental disorders ; Motivation ; Neostriatum ; Nervous system ; Nuclei (cytology) ; Nucleus accumbens ; Reinforcement ; Simulation ; Spiny neurons</subject><ispartof>Journal of computational neuroscience, 2021-02, Vol.49 (1), p.21-35</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Elibol Rahmi</creatorcontrib><creatorcontrib>Şengör, Neslihan Serap</creatorcontrib><title>Modeling nucleus accumbens</title><title>Journal of computational neuroscience</title><description>Nucleus accumbens is part of the neural structures required for reward based learning and cognitive processing of motivation. Understanding its cellular dynamics and its role in basal ganglia circuits is important not only in diagnosing behavioral disorders and psychiatric problems as addiction and depression but also for developing therapeutic treatments for them. Building a computational model would expand our comprehension of nucleus accumbens. In this work, we are focusing on establishing a model of nucleus accumbens which has not been considered as much as dorsal striatum in computational neuroscience. We will begin by modeling the behavior of single cells and then build a holistic model of nucleus accumbens considering the effect of synaptic currents. We will verify the validity of the model by showing the consistency of simulation results with the empirical data. Furthermore, the simulation results reveal the joint effect of cortical stimulation and dopaminergic modulation on the activity of medium spiny neurons. This effect differentiates with the type of dopamine receptors.</description><subject>Addictions</subject><subject>Animal behavior</subject><subject>Animal memory</subject><subject>Animal training</subject><subject>Basal ganglia</subject><subject>Caudate-putamen</subject><subject>Cognitive ability</subject><subject>Computational neuroscience</subject><subject>Dopamine</subject><subject>Dopamine receptors</subject><subject>Ganglia</subject><subject>Information processing</subject><subject>Mental disorders</subject><subject>Motivation</subject><subject>Neostriatum</subject><subject>Nervous system</subject><subject>Nuclei (cytology)</subject><subject>Nucleus accumbens</subject><subject>Reinforcement</subject><subject>Simulation</subject><subject>Spiny neurons</subject><issn>0929-5313</issn><issn>1573-6873</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNirsOgjAUQG-MJuLjB5hInKu3rbSX2Whc3NgJ1mokWJRrB_9eBj_A6eTkHIBU4loi2g1LJGUFKhSDmkJ8RpDI3GphyOoxJFioQuRa6inMmBtEJCsxgfTUXXx7D7csRNf6yFntXHycfeAFTK51y3754xxWh325O4pn372i53fVdLEPQ6rUlgi1sUT6v-sLbqoyHw</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Elibol Rahmi</creator><creator>Şengör, Neslihan Serap</creator><general>Springer Nature B.V</general><scope>3V.</scope><scope>7QO</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope></search><sort><creationdate>20210201</creationdate><title>Modeling nucleus accumbens</title><author>Elibol Rahmi ; Şengör, Neslihan Serap</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_24880367883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Addictions</topic><topic>Animal behavior</topic><topic>Animal memory</topic><topic>Animal training</topic><topic>Basal ganglia</topic><topic>Caudate-putamen</topic><topic>Cognitive ability</topic><topic>Computational neuroscience</topic><topic>Dopamine</topic><topic>Dopamine receptors</topic><topic>Ganglia</topic><topic>Information processing</topic><topic>Mental disorders</topic><topic>Motivation</topic><topic>Neostriatum</topic><topic>Nervous system</topic><topic>Nuclei (cytology)</topic><topic>Nucleus accumbens</topic><topic>Reinforcement</topic><topic>Simulation</topic><topic>Spiny neurons</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Elibol Rahmi</creatorcontrib><creatorcontrib>Şengör, Neslihan Serap</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of computational neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Elibol Rahmi</au><au>Şengör, Neslihan Serap</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling nucleus accumbens</atitle><jtitle>Journal of computational neuroscience</jtitle><date>2021-02-01</date><risdate>2021</risdate><volume>49</volume><issue>1</issue><spage>21</spage><epage>35</epage><pages>21-35</pages><issn>0929-5313</issn><eissn>1573-6873</eissn><abstract>Nucleus accumbens is part of the neural structures required for reward based learning and cognitive processing of motivation. Understanding its cellular dynamics and its role in basal ganglia circuits is important not only in diagnosing behavioral disorders and psychiatric problems as addiction and depression but also for developing therapeutic treatments for them. Building a computational model would expand our comprehension of nucleus accumbens. In this work, we are focusing on establishing a model of nucleus accumbens which has not been considered as much as dorsal striatum in computational neuroscience. We will begin by modeling the behavior of single cells and then build a holistic model of nucleus accumbens considering the effect of synaptic currents. We will verify the validity of the model by showing the consistency of simulation results with the empirical data. Furthermore, the simulation results reveal the joint effect of cortical stimulation and dopaminergic modulation on the activity of medium spiny neurons. This effect differentiates with the type of dopamine receptors.</abstract><cop>New York</cop><pub>Springer Nature B.V</pub><doi>10.1007/s10827-020-00769-y</doi></addata></record>
fulltext fulltext
identifier ISSN: 0929-5313
ispartof Journal of computational neuroscience, 2021-02, Vol.49 (1), p.21-35
issn 0929-5313
1573-6873
language eng
recordid cdi_proquest_journals_2488036788
source SpringerLink Journals - AutoHoldings
subjects Addictions
Animal behavior
Animal memory
Animal training
Basal ganglia
Caudate-putamen
Cognitive ability
Computational neuroscience
Dopamine
Dopamine receptors
Ganglia
Information processing
Mental disorders
Motivation
Neostriatum
Nervous system
Nuclei (cytology)
Nucleus accumbens
Reinforcement
Simulation
Spiny neurons
title Modeling nucleus accumbens
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T14%3A02%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20nucleus%20accumbens&rft.jtitle=Journal%20of%20computational%20neuroscience&rft.au=Elibol%20Rahmi&rft.date=2021-02-01&rft.volume=49&rft.issue=1&rft.spage=21&rft.epage=35&rft.pages=21-35&rft.issn=0929-5313&rft.eissn=1573-6873&rft_id=info:doi/10.1007/s10827-020-00769-y&rft_dat=%3Cproquest%3E2488036788%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2488036788&rft_id=info:pmid/&rfr_iscdi=true