Numerical investigation of conjugate heat transfer in a pillow-plate heat exchanger

•Conjugate heat transfer simulations were carried out for a pillow-plate heat exchanger (PPHX).•A detailed analysis of the thermal partial resistances of a PPHX.•New approaches for the accurate PPHX dimensioning are suggested.•PPHX from aluminium yield significantly better heat transfer performance...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of heat and mass transfer 2021-02, Vol.165, p.120567, Article 120567
Hauptverfasser: Zibart, A., Kenig, E.Y.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 120567
container_title International journal of heat and mass transfer
container_volume 165
creator Zibart, A.
Kenig, E.Y.
description •Conjugate heat transfer simulations were carried out for a pillow-plate heat exchanger (PPHX).•A detailed analysis of the thermal partial resistances of a PPHX.•New approaches for the accurate PPHX dimensioning are suggested.•PPHX from aluminium yield significantly better heat transfer performance than PPHX from stainless steel. Pillow Plate Heat Exchangers (PPHX) are composed of several pillow plates arranged parallel to each other, with one flow path inside the plates (inner channel flow) and another in the spaces between adjacent plates (outer channel flow). In research studies published by now, the transport phenomena in these two flow paths have mostly been treated in a separate manner. Such a treatment does not permit to identify important effects, e.g., unfavourable thermal interaction between the inner and outer channel flow caused by predominant recirculation zones, or the influence of the material used for the pillow plate manufacturing. In this work, for the first time, conjugate heat transfer modelling and CFD-based simulations were carried out for a PPHX operated in countercurrent mode. This allowed a detailed analysis of the individual thermal resistances in a PPHX. Based on the results of this analysis, approaches for the correct calculation of these thermal resistances were created.
doi_str_mv 10.1016/j.ijheatmasstransfer.2020.120567
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2488032335</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0017931020335031</els_id><sourcerecordid>2488032335</sourcerecordid><originalsourceid>FETCH-LOGICAL-c370t-47269602b0a8d174da3d8f4f5122e2f31bc7ab72c30eaa5f2add0a2a02824e503</originalsourceid><addsrcrecordid>eNqNkM1OwzAQhC0EEqXwDpG4cElZ20mc3EAVv0JwAM7W1rFbR2kS7KTA2-MowIULp9VqRt_sDiFnFBYUaHZeLWy10dhv0fveYeONdgsGLMgM0kzskRnNRREzmhf7ZAZARVxwCofkyPtqXCHJZuT5cdhqZxXWkW122vd2jb1tm6g1kWqbagirjsag6CclGCOMOlvX7Xvc1b-6_lAbbNbaHZMDg7XXJ99zTl6vr16Wt_HD083d8vIhVlxAHyeCZUUGbAWYl1QkJfIyN4lJKWOaGU5XSuBKMMVBI6aGYVkCMgSWs0SnwOfkdOJ2rn0bwu2yagfXhEjJkjwHzjhPg-ticinXeu-0kZ2zW3SfkoIcq5SV_FulHKuUU5UBcT8hdPhmZ4PqldWN0qV1WvWybO3_YV95v4oY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2488032335</pqid></control><display><type>article</type><title>Numerical investigation of conjugate heat transfer in a pillow-plate heat exchanger</title><source>Elsevier ScienceDirect Journals</source><creator>Zibart, A. ; Kenig, E.Y.</creator><creatorcontrib>Zibart, A. ; Kenig, E.Y.</creatorcontrib><description>•Conjugate heat transfer simulations were carried out for a pillow-plate heat exchanger (PPHX).•A detailed analysis of the thermal partial resistances of a PPHX.•New approaches for the accurate PPHX dimensioning are suggested.•PPHX from aluminium yield significantly better heat transfer performance than PPHX from stainless steel. Pillow Plate Heat Exchangers (PPHX) are composed of several pillow plates arranged parallel to each other, with one flow path inside the plates (inner channel flow) and another in the spaces between adjacent plates (outer channel flow). In research studies published by now, the transport phenomena in these two flow paths have mostly been treated in a separate manner. Such a treatment does not permit to identify important effects, e.g., unfavourable thermal interaction between the inner and outer channel flow caused by predominant recirculation zones, or the influence of the material used for the pillow plate manufacturing. In this work, for the first time, conjugate heat transfer modelling and CFD-based simulations were carried out for a PPHX operated in countercurrent mode. This allowed a detailed analysis of the individual thermal resistances in a PPHX. Based on the results of this analysis, approaches for the correct calculation of these thermal resistances were created.</description><identifier>ISSN: 0017-9310</identifier><identifier>EISSN: 1879-2189</identifier><identifier>DOI: 10.1016/j.ijheatmasstransfer.2020.120567</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>CFD ; Channel flow ; Conjugate heat transfer ; Conjugates ; Design methods ; Flow paths ; Heat transfer ; Pillow plate ; Plate heat exchangers ; Plates ; Transport phenomena</subject><ispartof>International journal of heat and mass transfer, 2021-02, Vol.165, p.120567, Article 120567</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier BV Feb 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c370t-47269602b0a8d174da3d8f4f5122e2f31bc7ab72c30eaa5f2add0a2a02824e503</citedby><cites>FETCH-LOGICAL-c370t-47269602b0a8d174da3d8f4f5122e2f31bc7ab72c30eaa5f2add0a2a02824e503</cites><orcidid>0000-0002-8530-7460</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0017931020335031$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Zibart, A.</creatorcontrib><creatorcontrib>Kenig, E.Y.</creatorcontrib><title>Numerical investigation of conjugate heat transfer in a pillow-plate heat exchanger</title><title>International journal of heat and mass transfer</title><description>•Conjugate heat transfer simulations were carried out for a pillow-plate heat exchanger (PPHX).•A detailed analysis of the thermal partial resistances of a PPHX.•New approaches for the accurate PPHX dimensioning are suggested.•PPHX from aluminium yield significantly better heat transfer performance than PPHX from stainless steel. Pillow Plate Heat Exchangers (PPHX) are composed of several pillow plates arranged parallel to each other, with one flow path inside the plates (inner channel flow) and another in the spaces between adjacent plates (outer channel flow). In research studies published by now, the transport phenomena in these two flow paths have mostly been treated in a separate manner. Such a treatment does not permit to identify important effects, e.g., unfavourable thermal interaction between the inner and outer channel flow caused by predominant recirculation zones, or the influence of the material used for the pillow plate manufacturing. In this work, for the first time, conjugate heat transfer modelling and CFD-based simulations were carried out for a PPHX operated in countercurrent mode. This allowed a detailed analysis of the individual thermal resistances in a PPHX. Based on the results of this analysis, approaches for the correct calculation of these thermal resistances were created.</description><subject>CFD</subject><subject>Channel flow</subject><subject>Conjugate heat transfer</subject><subject>Conjugates</subject><subject>Design methods</subject><subject>Flow paths</subject><subject>Heat transfer</subject><subject>Pillow plate</subject><subject>Plate heat exchangers</subject><subject>Plates</subject><subject>Transport phenomena</subject><issn>0017-9310</issn><issn>1879-2189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqNkM1OwzAQhC0EEqXwDpG4cElZ20mc3EAVv0JwAM7W1rFbR2kS7KTA2-MowIULp9VqRt_sDiFnFBYUaHZeLWy10dhv0fveYeONdgsGLMgM0kzskRnNRREzmhf7ZAZARVxwCofkyPtqXCHJZuT5cdhqZxXWkW122vd2jb1tm6g1kWqbagirjsag6CclGCOMOlvX7Xvc1b-6_lAbbNbaHZMDg7XXJ99zTl6vr16Wt_HD083d8vIhVlxAHyeCZUUGbAWYl1QkJfIyN4lJKWOaGU5XSuBKMMVBI6aGYVkCMgSWs0SnwOfkdOJ2rn0bwu2yagfXhEjJkjwHzjhPg-ticinXeu-0kZ2zW3SfkoIcq5SV_FulHKuUU5UBcT8hdPhmZ4PqldWN0qV1WvWybO3_YV95v4oY</recordid><startdate>202102</startdate><enddate>202102</enddate><creator>Zibart, A.</creator><creator>Kenig, E.Y.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8530-7460</orcidid></search><sort><creationdate>202102</creationdate><title>Numerical investigation of conjugate heat transfer in a pillow-plate heat exchanger</title><author>Zibart, A. ; Kenig, E.Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c370t-47269602b0a8d174da3d8f4f5122e2f31bc7ab72c30eaa5f2add0a2a02824e503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>CFD</topic><topic>Channel flow</topic><topic>Conjugate heat transfer</topic><topic>Conjugates</topic><topic>Design methods</topic><topic>Flow paths</topic><topic>Heat transfer</topic><topic>Pillow plate</topic><topic>Plate heat exchangers</topic><topic>Plates</topic><topic>Transport phenomena</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zibart, A.</creatorcontrib><creatorcontrib>Kenig, E.Y.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of heat and mass transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zibart, A.</au><au>Kenig, E.Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical investigation of conjugate heat transfer in a pillow-plate heat exchanger</atitle><jtitle>International journal of heat and mass transfer</jtitle><date>2021-02</date><risdate>2021</risdate><volume>165</volume><spage>120567</spage><pages>120567-</pages><artnum>120567</artnum><issn>0017-9310</issn><eissn>1879-2189</eissn><abstract>•Conjugate heat transfer simulations were carried out for a pillow-plate heat exchanger (PPHX).•A detailed analysis of the thermal partial resistances of a PPHX.•New approaches for the accurate PPHX dimensioning are suggested.•PPHX from aluminium yield significantly better heat transfer performance than PPHX from stainless steel. Pillow Plate Heat Exchangers (PPHX) are composed of several pillow plates arranged parallel to each other, with one flow path inside the plates (inner channel flow) and another in the spaces between adjacent plates (outer channel flow). In research studies published by now, the transport phenomena in these two flow paths have mostly been treated in a separate manner. Such a treatment does not permit to identify important effects, e.g., unfavourable thermal interaction between the inner and outer channel flow caused by predominant recirculation zones, or the influence of the material used for the pillow plate manufacturing. In this work, for the first time, conjugate heat transfer modelling and CFD-based simulations were carried out for a PPHX operated in countercurrent mode. This allowed a detailed analysis of the individual thermal resistances in a PPHX. Based on the results of this analysis, approaches for the correct calculation of these thermal resistances were created.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijheatmasstransfer.2020.120567</doi><orcidid>https://orcid.org/0000-0002-8530-7460</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0017-9310
ispartof International journal of heat and mass transfer, 2021-02, Vol.165, p.120567, Article 120567
issn 0017-9310
1879-2189
language eng
recordid cdi_proquest_journals_2488032335
source Elsevier ScienceDirect Journals
subjects CFD
Channel flow
Conjugate heat transfer
Conjugates
Design methods
Flow paths
Heat transfer
Pillow plate
Plate heat exchangers
Plates
Transport phenomena
title Numerical investigation of conjugate heat transfer in a pillow-plate heat exchanger
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T21%3A48%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20investigation%20of%20conjugate%20heat%20transfer%20in%20a%20pillow-plate%20heat%20exchanger&rft.jtitle=International%20journal%20of%20heat%20and%20mass%20transfer&rft.au=Zibart,%20A.&rft.date=2021-02&rft.volume=165&rft.spage=120567&rft.pages=120567-&rft.artnum=120567&rft.issn=0017-9310&rft.eissn=1879-2189&rft_id=info:doi/10.1016/j.ijheatmasstransfer.2020.120567&rft_dat=%3Cproquest_cross%3E2488032335%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2488032335&rft_id=info:pmid/&rft_els_id=S0017931020335031&rfr_iscdi=true