Direct current electrical resistivity forward modeling using comsol multiphysics
Forward modeling of direct current (DC) resistivity is very important for the inversion of the resistivity data to obtain the true resistivity of the subsurface. In this study, we demonstrated finite-element forward modeling of DC resistivity method with point electric source using COMSOL Multiphysi...
Gespeichert in:
Veröffentlicht in: | Modeling earth systems and environment 2021-03, Vol.7 (1), p.117-123 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 123 |
---|---|
container_issue | 1 |
container_start_page | 117 |
container_title | Modeling earth systems and environment |
container_volume | 7 |
creator | Sanuade, Oluseun A. Amosun, Joel O. Fagbemigun, Tokunbo S. Oyebamiji, Ajibola R. Oyeyemi, Kehinde D. |
description | Forward modeling of direct current (DC) resistivity is very important for the inversion of the resistivity data to obtain the true resistivity of the subsurface. In this study, we demonstrated finite-element forward modeling of DC resistivity method with point electric source using COMSOL Multiphysics. We employed the AC/DC module in COMSOL which often provides comparatively easy implementation of models and permits exterior boundaries to be placed at infinity, a boundary condition often experienced in most geophysical problems. The validity and effectiveness of the results of numerical simulation using COMSOL Multiphysics were evaluated by comparing the output of the numerical simulations with the calculated analytic solutions. The result reveals that the numerical simulation is in agreement with the analytic solution. This study shows that COMSOL Multiphysics can be used to simulate the distribution of electrical potentials of point source in 3D space in real life and the information from this study can be used for further studies, such as DC resistivity inversions. |
doi_str_mv | 10.1007/s40808-020-00898-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2488031210</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2488031210</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-4f770987c79abd568afa1e2cb705f9c6982cda36245c9ac26a3c75fe8c9bb9c93</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOIzzB1wVXFdvkjZNljI-YUAXug7pbTpm6GNMUqX_3o4V3bm5Dzjn3MtHyDmFSwpQXIUMJMgUGKQAUsk0OyILxgVPBaP0-HcGfkpWIewAgAomhFIL8nzjvMWY4OC97WJim2nzDk2TeBtciO7DxTGpe_9pfJW0fWUb122TIRwq9m3om6Qdmuj2b2NwGM7ISW2aYFc_fUle725f1g_p5un-cX29SXF6JqZZXRSgZIGFMmWVC2lqQy3DsoC8ViiUZFgZLliWozLIhOFY5LWVqMpSoeJLcjHn7n3_PtgQ9a4ffDed1CyTEjhlFCYVm1Xo-xC8rfXeu9b4UVPQB3h6hqcnePobns4mE59NYRJ3W-v_ov9xfQEA_HOp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2488031210</pqid></control><display><type>article</type><title>Direct current electrical resistivity forward modeling using comsol multiphysics</title><source>SpringerNature Journals</source><creator>Sanuade, Oluseun A. ; Amosun, Joel O. ; Fagbemigun, Tokunbo S. ; Oyebamiji, Ajibola R. ; Oyeyemi, Kehinde D.</creator><creatorcontrib>Sanuade, Oluseun A. ; Amosun, Joel O. ; Fagbemigun, Tokunbo S. ; Oyebamiji, Ajibola R. ; Oyeyemi, Kehinde D.</creatorcontrib><description>Forward modeling of direct current (DC) resistivity is very important for the inversion of the resistivity data to obtain the true resistivity of the subsurface. In this study, we demonstrated finite-element forward modeling of DC resistivity method with point electric source using COMSOL Multiphysics. We employed the AC/DC module in COMSOL which often provides comparatively easy implementation of models and permits exterior boundaries to be placed at infinity, a boundary condition often experienced in most geophysical problems. The validity and effectiveness of the results of numerical simulation using COMSOL Multiphysics were evaluated by comparing the output of the numerical simulations with the calculated analytic solutions. The result reveals that the numerical simulation is in agreement with the analytic solution. This study shows that COMSOL Multiphysics can be used to simulate the distribution of electrical potentials of point source in 3D space in real life and the information from this study can be used for further studies, such as DC resistivity inversions.</description><identifier>ISSN: 2363-6203</identifier><identifier>EISSN: 2363-6211</identifier><identifier>DOI: 10.1007/s40808-020-00898-4</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Alternating current ; Boundary conditions ; Chemistry and Earth Sciences ; Computer Science ; Computer simulation ; Direct current ; Earth and Environmental Science ; Earth Sciences ; Earth System Sciences ; Ecosystems ; Electrical resistivity ; Environment ; Exact solutions ; Finite element method ; Inversions ; Math. Appl. in Environmental Science ; Mathematical Applications in the Physical Sciences ; Mathematical models ; Modelling ; Original Article ; Physics ; Simulation ; Statistics for Engineering ; Water pollution</subject><ispartof>Modeling earth systems and environment, 2021-03, Vol.7 (1), p.117-123</ispartof><rights>Springer Nature Switzerland AG 2020</rights><rights>Springer Nature Switzerland AG 2020.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-4f770987c79abd568afa1e2cb705f9c6982cda36245c9ac26a3c75fe8c9bb9c93</citedby><cites>FETCH-LOGICAL-c363t-4f770987c79abd568afa1e2cb705f9c6982cda36245c9ac26a3c75fe8c9bb9c93</cites><orcidid>0000-0003-2933-623X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40808-020-00898-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40808-020-00898-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27929,27930,41493,42562,51324</link.rule.ids></links><search><creatorcontrib>Sanuade, Oluseun A.</creatorcontrib><creatorcontrib>Amosun, Joel O.</creatorcontrib><creatorcontrib>Fagbemigun, Tokunbo S.</creatorcontrib><creatorcontrib>Oyebamiji, Ajibola R.</creatorcontrib><creatorcontrib>Oyeyemi, Kehinde D.</creatorcontrib><title>Direct current electrical resistivity forward modeling using comsol multiphysics</title><title>Modeling earth systems and environment</title><addtitle>Model. Earth Syst. Environ</addtitle><description>Forward modeling of direct current (DC) resistivity is very important for the inversion of the resistivity data to obtain the true resistivity of the subsurface. In this study, we demonstrated finite-element forward modeling of DC resistivity method with point electric source using COMSOL Multiphysics. We employed the AC/DC module in COMSOL which often provides comparatively easy implementation of models and permits exterior boundaries to be placed at infinity, a boundary condition often experienced in most geophysical problems. The validity and effectiveness of the results of numerical simulation using COMSOL Multiphysics were evaluated by comparing the output of the numerical simulations with the calculated analytic solutions. The result reveals that the numerical simulation is in agreement with the analytic solution. This study shows that COMSOL Multiphysics can be used to simulate the distribution of electrical potentials of point source in 3D space in real life and the information from this study can be used for further studies, such as DC resistivity inversions.</description><subject>Alternating current</subject><subject>Boundary conditions</subject><subject>Chemistry and Earth Sciences</subject><subject>Computer Science</subject><subject>Computer simulation</subject><subject>Direct current</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Earth System Sciences</subject><subject>Ecosystems</subject><subject>Electrical resistivity</subject><subject>Environment</subject><subject>Exact solutions</subject><subject>Finite element method</subject><subject>Inversions</subject><subject>Math. Appl. in Environmental Science</subject><subject>Mathematical Applications in the Physical Sciences</subject><subject>Mathematical models</subject><subject>Modelling</subject><subject>Original Article</subject><subject>Physics</subject><subject>Simulation</subject><subject>Statistics for Engineering</subject><subject>Water pollution</subject><issn>2363-6203</issn><issn>2363-6211</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kEtLxDAUhYMoOIzzB1wVXFdvkjZNljI-YUAXug7pbTpm6GNMUqX_3o4V3bm5Dzjn3MtHyDmFSwpQXIUMJMgUGKQAUsk0OyILxgVPBaP0-HcGfkpWIewAgAomhFIL8nzjvMWY4OC97WJim2nzDk2TeBtciO7DxTGpe_9pfJW0fWUb122TIRwq9m3om6Qdmuj2b2NwGM7ISW2aYFc_fUle725f1g_p5un-cX29SXF6JqZZXRSgZIGFMmWVC2lqQy3DsoC8ViiUZFgZLliWozLIhOFY5LWVqMpSoeJLcjHn7n3_PtgQ9a4ffDed1CyTEjhlFCYVm1Xo-xC8rfXeu9b4UVPQB3h6hqcnePobns4mE59NYRJ3W-v_ov9xfQEA_HOp</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Sanuade, Oluseun A.</creator><creator>Amosun, Joel O.</creator><creator>Fagbemigun, Tokunbo S.</creator><creator>Oyebamiji, Ajibola R.</creator><creator>Oyeyemi, Kehinde D.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TN</scope><scope>7UA</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><orcidid>https://orcid.org/0000-0003-2933-623X</orcidid></search><sort><creationdate>20210301</creationdate><title>Direct current electrical resistivity forward modeling using comsol multiphysics</title><author>Sanuade, Oluseun A. ; Amosun, Joel O. ; Fagbemigun, Tokunbo S. ; Oyebamiji, Ajibola R. ; Oyeyemi, Kehinde D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-4f770987c79abd568afa1e2cb705f9c6982cda36245c9ac26a3c75fe8c9bb9c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Alternating current</topic><topic>Boundary conditions</topic><topic>Chemistry and Earth Sciences</topic><topic>Computer Science</topic><topic>Computer simulation</topic><topic>Direct current</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Earth System Sciences</topic><topic>Ecosystems</topic><topic>Electrical resistivity</topic><topic>Environment</topic><topic>Exact solutions</topic><topic>Finite element method</topic><topic>Inversions</topic><topic>Math. Appl. in Environmental Science</topic><topic>Mathematical Applications in the Physical Sciences</topic><topic>Mathematical models</topic><topic>Modelling</topic><topic>Original Article</topic><topic>Physics</topic><topic>Simulation</topic><topic>Statistics for Engineering</topic><topic>Water pollution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sanuade, Oluseun A.</creatorcontrib><creatorcontrib>Amosun, Joel O.</creatorcontrib><creatorcontrib>Fagbemigun, Tokunbo S.</creatorcontrib><creatorcontrib>Oyebamiji, Ajibola R.</creatorcontrib><creatorcontrib>Oyeyemi, Kehinde D.</creatorcontrib><collection>CrossRef</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><jtitle>Modeling earth systems and environment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sanuade, Oluseun A.</au><au>Amosun, Joel O.</au><au>Fagbemigun, Tokunbo S.</au><au>Oyebamiji, Ajibola R.</au><au>Oyeyemi, Kehinde D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Direct current electrical resistivity forward modeling using comsol multiphysics</atitle><jtitle>Modeling earth systems and environment</jtitle><stitle>Model. Earth Syst. Environ</stitle><date>2021-03-01</date><risdate>2021</risdate><volume>7</volume><issue>1</issue><spage>117</spage><epage>123</epage><pages>117-123</pages><issn>2363-6203</issn><eissn>2363-6211</eissn><abstract>Forward modeling of direct current (DC) resistivity is very important for the inversion of the resistivity data to obtain the true resistivity of the subsurface. In this study, we demonstrated finite-element forward modeling of DC resistivity method with point electric source using COMSOL Multiphysics. We employed the AC/DC module in COMSOL which often provides comparatively easy implementation of models and permits exterior boundaries to be placed at infinity, a boundary condition often experienced in most geophysical problems. The validity and effectiveness of the results of numerical simulation using COMSOL Multiphysics were evaluated by comparing the output of the numerical simulations with the calculated analytic solutions. The result reveals that the numerical simulation is in agreement with the analytic solution. This study shows that COMSOL Multiphysics can be used to simulate the distribution of electrical potentials of point source in 3D space in real life and the information from this study can be used for further studies, such as DC resistivity inversions.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s40808-020-00898-4</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-2933-623X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2363-6203 |
ispartof | Modeling earth systems and environment, 2021-03, Vol.7 (1), p.117-123 |
issn | 2363-6203 2363-6211 |
language | eng |
recordid | cdi_proquest_journals_2488031210 |
source | SpringerNature Journals |
subjects | Alternating current Boundary conditions Chemistry and Earth Sciences Computer Science Computer simulation Direct current Earth and Environmental Science Earth Sciences Earth System Sciences Ecosystems Electrical resistivity Environment Exact solutions Finite element method Inversions Math. Appl. in Environmental Science Mathematical Applications in the Physical Sciences Mathematical models Modelling Original Article Physics Simulation Statistics for Engineering Water pollution |
title | Direct current electrical resistivity forward modeling using comsol multiphysics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T03%3A11%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Direct%20current%20electrical%20resistivity%20forward%20modeling%20using%20comsol%20multiphysics&rft.jtitle=Modeling%20earth%20systems%20and%20environment&rft.au=Sanuade,%20Oluseun%20A.&rft.date=2021-03-01&rft.volume=7&rft.issue=1&rft.spage=117&rft.epage=123&rft.pages=117-123&rft.issn=2363-6203&rft.eissn=2363-6211&rft_id=info:doi/10.1007/s40808-020-00898-4&rft_dat=%3Cproquest_cross%3E2488031210%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2488031210&rft_id=info:pmid/&rfr_iscdi=true |