Room temperature laser power standard using a microfabricated, electrical substitution bolometer

The design and performance of a room temperature electrical substitution radiometer for use as an absolute standard for measuring continuous-wave laser power over a wide range of wavelengths, beam diameters, and powers are described. The standard achieves an accuracy of 0.46% (k = 2) for powers from...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Review of scientific instruments 2021-02, Vol.92 (2), p.025107-025107
Hauptverfasser: Stephens, M., Yung, C. S., Tomlin, N. A., Vaskuri, A., Ryger, I., Spidell, M., White, M. G., Jenkins, T., Landry, J., Sereke, T., Lehman, J. H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 025107
container_issue 2
container_start_page 025107
container_title Review of scientific instruments
container_volume 92
creator Stephens, M.
Yung, C. S.
Tomlin, N. A.
Vaskuri, A.
Ryger, I.
Spidell, M.
White, M. G.
Jenkins, T.
Landry, J.
Sereke, T.
Lehman, J. H.
description The design and performance of a room temperature electrical substitution radiometer for use as an absolute standard for measuring continuous-wave laser power over a wide range of wavelengths, beam diameters, and powers are described. The standard achieves an accuracy of 0.46% (k = 2) for powers from 10 mW to 100 mW and 0.83% (k = 2) for powers from 1 mW to 10 mW and can accommodate laser beam diameters (1/e2) up to 11 mm and wavelengths from 300 nm to 2 μm. At low power levels, the uncertainty is dominated by sensitivity to fluctuations in the thermal environment. The core of the instrument is a planar, silicon microfabricated bolometer with vertically aligned carbon nanotube absorbers, commercial surface mount thermistors, and an integrated heater. Where possible, commercial electronics and components were used. The performance was validated by comparing it to a National Institute of Standards and Technology primary standard through a transfer standard silicon trap detector and by comparing it to the legacy “C-series” standards in operation at the U.S. Air Force Metrology and Calibration Division (AFMETCAL).
doi_str_mv 10.1063/5.0032366
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2488025466</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2495403167</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-9257f1321fd5710b3009f84beb5ae611e95ac1b6d04da25f99de8be9436eb04b3</originalsourceid><addsrcrecordid>eNp90MtKxDAUBuAgijNeFr6ABNyo2DFpLm2XMniDAUF0XZPmVCptU5NU8e3NMKOCoFkkJHz8nPwIHVAyo0SyczEjhKVMyg00pSQvkkymbBNN4ytPZMbzCdrx_oXEJSjdRhPGJM-JIFP0dG9thwN0AzgVRge4VR4cHux73H1QvVHO4NE3_TNWuGsqZ2ulXVOpAOYMQwtVWN5a7EftQxPG0Ngea9vaDgK4PbRVq9bD_vrcRY9Xlw_zm2Rxd307v1gkFctZSIpUZDVlKa2NyCjRjJCizrkGLRRISqEQqqJaGsKNSkVdFAZyDQVnEjThmu2i41Xu4OzrCD6UXeMraFvVgx19mfJCcMKozCI9-kVf7Oj6OF1UeU5SwaWM6mSl4o-9d1CXg2s65T5KSspl7aUo17VHe7hOHHUH5lt-9RzB6Qr4qglq2dC_aX_iN-t-YDmYmn0CEUmZXA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2488025466</pqid></control><display><type>article</type><title>Room temperature laser power standard using a microfabricated, electrical substitution bolometer</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Stephens, M. ; Yung, C. S. ; Tomlin, N. A. ; Vaskuri, A. ; Ryger, I. ; Spidell, M. ; White, M. G. ; Jenkins, T. ; Landry, J. ; Sereke, T. ; Lehman, J. H.</creator><creatorcontrib>Stephens, M. ; Yung, C. S. ; Tomlin, N. A. ; Vaskuri, A. ; Ryger, I. ; Spidell, M. ; White, M. G. ; Jenkins, T. ; Landry, J. ; Sereke, T. ; Lehman, J. H.</creatorcontrib><description>The design and performance of a room temperature electrical substitution radiometer for use as an absolute standard for measuring continuous-wave laser power over a wide range of wavelengths, beam diameters, and powers are described. The standard achieves an accuracy of 0.46% (k = 2) for powers from 10 mW to 100 mW and 0.83% (k = 2) for powers from 1 mW to 10 mW and can accommodate laser beam diameters (1/e2) up to 11 mm and wavelengths from 300 nm to 2 μm. At low power levels, the uncertainty is dominated by sensitivity to fluctuations in the thermal environment. The core of the instrument is a planar, silicon microfabricated bolometer with vertically aligned carbon nanotube absorbers, commercial surface mount thermistors, and an integrated heater. Where possible, commercial electronics and components were used. The performance was validated by comparing it to a National Institute of Standards and Technology primary standard through a transfer standard silicon trap detector and by comparing it to the legacy “C-series” standards in operation at the U.S. Air Force Metrology and Calibration Division (AFMETCAL).</description><identifier>ISSN: 0034-6748</identifier><identifier>EISSN: 1089-7623</identifier><identifier>DOI: 10.1063/5.0032366</identifier><identifier>PMID: 33648050</identifier><identifier>CODEN: RSINAK</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Bolometers ; Carbon nanotubes ; Continuous wave lasers ; Diameters ; Laser beams ; Lasers ; Room temperature ; Scientific apparatus &amp; instruments ; Silicon ; Substitutes ; Thermal environments ; Thermistors ; Wavelengths</subject><ispartof>Review of scientific instruments, 2021-02, Vol.92 (2), p.025107-025107</ispartof><rights>Author(s)</rights><rights>2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-9257f1321fd5710b3009f84beb5ae611e95ac1b6d04da25f99de8be9436eb04b3</citedby><cites>FETCH-LOGICAL-c383t-9257f1321fd5710b3009f84beb5ae611e95ac1b6d04da25f99de8be9436eb04b3</cites><orcidid>0000-0003-2514-4046 ; 0000-0002-8313-9045 ; 0000-0003-4729-7123 ; 0000-0001-6089-2635 ; 0000-0003-1246-4550 ; 0000-0002-5513-8520 ; 0000-0002-6789-8850 ; 0000-0002-7912-6591 ; 0000000279126591 ; 0000000283139045 ; 0000000160892635 ; 0000000325144046 ; 0000000267898850 ; 0000000312464550 ; 0000000255138520 ; 0000000347297123</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/rsi/article-lookup/doi/10.1063/5.0032366$$EHTML$$P50$$Gscitation$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,791,4498,27905,27906,76133</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33648050$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Stephens, M.</creatorcontrib><creatorcontrib>Yung, C. S.</creatorcontrib><creatorcontrib>Tomlin, N. A.</creatorcontrib><creatorcontrib>Vaskuri, A.</creatorcontrib><creatorcontrib>Ryger, I.</creatorcontrib><creatorcontrib>Spidell, M.</creatorcontrib><creatorcontrib>White, M. G.</creatorcontrib><creatorcontrib>Jenkins, T.</creatorcontrib><creatorcontrib>Landry, J.</creatorcontrib><creatorcontrib>Sereke, T.</creatorcontrib><creatorcontrib>Lehman, J. H.</creatorcontrib><title>Room temperature laser power standard using a microfabricated, electrical substitution bolometer</title><title>Review of scientific instruments</title><addtitle>Rev Sci Instrum</addtitle><description>The design and performance of a room temperature electrical substitution radiometer for use as an absolute standard for measuring continuous-wave laser power over a wide range of wavelengths, beam diameters, and powers are described. The standard achieves an accuracy of 0.46% (k = 2) for powers from 10 mW to 100 mW and 0.83% (k = 2) for powers from 1 mW to 10 mW and can accommodate laser beam diameters (1/e2) up to 11 mm and wavelengths from 300 nm to 2 μm. At low power levels, the uncertainty is dominated by sensitivity to fluctuations in the thermal environment. The core of the instrument is a planar, silicon microfabricated bolometer with vertically aligned carbon nanotube absorbers, commercial surface mount thermistors, and an integrated heater. Where possible, commercial electronics and components were used. The performance was validated by comparing it to a National Institute of Standards and Technology primary standard through a transfer standard silicon trap detector and by comparing it to the legacy “C-series” standards in operation at the U.S. Air Force Metrology and Calibration Division (AFMETCAL).</description><subject>Bolometers</subject><subject>Carbon nanotubes</subject><subject>Continuous wave lasers</subject><subject>Diameters</subject><subject>Laser beams</subject><subject>Lasers</subject><subject>Room temperature</subject><subject>Scientific apparatus &amp; instruments</subject><subject>Silicon</subject><subject>Substitutes</subject><subject>Thermal environments</subject><subject>Thermistors</subject><subject>Wavelengths</subject><issn>0034-6748</issn><issn>1089-7623</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp90MtKxDAUBuAgijNeFr6ABNyo2DFpLm2XMniDAUF0XZPmVCptU5NU8e3NMKOCoFkkJHz8nPwIHVAyo0SyczEjhKVMyg00pSQvkkymbBNN4ytPZMbzCdrx_oXEJSjdRhPGJM-JIFP0dG9thwN0AzgVRge4VR4cHux73H1QvVHO4NE3_TNWuGsqZ2ulXVOpAOYMQwtVWN5a7EftQxPG0Ngea9vaDgK4PbRVq9bD_vrcRY9Xlw_zm2Rxd307v1gkFctZSIpUZDVlKa2NyCjRjJCizrkGLRRISqEQqqJaGsKNSkVdFAZyDQVnEjThmu2i41Xu4OzrCD6UXeMraFvVgx19mfJCcMKozCI9-kVf7Oj6OF1UeU5SwaWM6mSl4o-9d1CXg2s65T5KSspl7aUo17VHe7hOHHUH5lt-9RzB6Qr4qglq2dC_aX_iN-t-YDmYmn0CEUmZXA</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Stephens, M.</creator><creator>Yung, C. S.</creator><creator>Tomlin, N. A.</creator><creator>Vaskuri, A.</creator><creator>Ryger, I.</creator><creator>Spidell, M.</creator><creator>White, M. G.</creator><creator>Jenkins, T.</creator><creator>Landry, J.</creator><creator>Sereke, T.</creator><creator>Lehman, J. H.</creator><general>American Institute of Physics</general><scope>AJDQP</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2514-4046</orcidid><orcidid>https://orcid.org/0000-0002-8313-9045</orcidid><orcidid>https://orcid.org/0000-0003-4729-7123</orcidid><orcidid>https://orcid.org/0000-0001-6089-2635</orcidid><orcidid>https://orcid.org/0000-0003-1246-4550</orcidid><orcidid>https://orcid.org/0000-0002-5513-8520</orcidid><orcidid>https://orcid.org/0000-0002-6789-8850</orcidid><orcidid>https://orcid.org/0000-0002-7912-6591</orcidid><orcidid>https://orcid.org/0000000279126591</orcidid><orcidid>https://orcid.org/0000000283139045</orcidid><orcidid>https://orcid.org/0000000160892635</orcidid><orcidid>https://orcid.org/0000000325144046</orcidid><orcidid>https://orcid.org/0000000267898850</orcidid><orcidid>https://orcid.org/0000000312464550</orcidid><orcidid>https://orcid.org/0000000255138520</orcidid><orcidid>https://orcid.org/0000000347297123</orcidid></search><sort><creationdate>20210201</creationdate><title>Room temperature laser power standard using a microfabricated, electrical substitution bolometer</title><author>Stephens, M. ; Yung, C. S. ; Tomlin, N. A. ; Vaskuri, A. ; Ryger, I. ; Spidell, M. ; White, M. G. ; Jenkins, T. ; Landry, J. ; Sereke, T. ; Lehman, J. H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-9257f1321fd5710b3009f84beb5ae611e95ac1b6d04da25f99de8be9436eb04b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Bolometers</topic><topic>Carbon nanotubes</topic><topic>Continuous wave lasers</topic><topic>Diameters</topic><topic>Laser beams</topic><topic>Lasers</topic><topic>Room temperature</topic><topic>Scientific apparatus &amp; instruments</topic><topic>Silicon</topic><topic>Substitutes</topic><topic>Thermal environments</topic><topic>Thermistors</topic><topic>Wavelengths</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stephens, M.</creatorcontrib><creatorcontrib>Yung, C. S.</creatorcontrib><creatorcontrib>Tomlin, N. A.</creatorcontrib><creatorcontrib>Vaskuri, A.</creatorcontrib><creatorcontrib>Ryger, I.</creatorcontrib><creatorcontrib>Spidell, M.</creatorcontrib><creatorcontrib>White, M. G.</creatorcontrib><creatorcontrib>Jenkins, T.</creatorcontrib><creatorcontrib>Landry, J.</creatorcontrib><creatorcontrib>Sereke, T.</creatorcontrib><creatorcontrib>Lehman, J. H.</creatorcontrib><collection>AIP Open Access Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Review of scientific instruments</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stephens, M.</au><au>Yung, C. S.</au><au>Tomlin, N. A.</au><au>Vaskuri, A.</au><au>Ryger, I.</au><au>Spidell, M.</au><au>White, M. G.</au><au>Jenkins, T.</au><au>Landry, J.</au><au>Sereke, T.</au><au>Lehman, J. H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Room temperature laser power standard using a microfabricated, electrical substitution bolometer</atitle><jtitle>Review of scientific instruments</jtitle><addtitle>Rev Sci Instrum</addtitle><date>2021-02-01</date><risdate>2021</risdate><volume>92</volume><issue>2</issue><spage>025107</spage><epage>025107</epage><pages>025107-025107</pages><issn>0034-6748</issn><eissn>1089-7623</eissn><coden>RSINAK</coden><abstract>The design and performance of a room temperature electrical substitution radiometer for use as an absolute standard for measuring continuous-wave laser power over a wide range of wavelengths, beam diameters, and powers are described. The standard achieves an accuracy of 0.46% (k = 2) for powers from 10 mW to 100 mW and 0.83% (k = 2) for powers from 1 mW to 10 mW and can accommodate laser beam diameters (1/e2) up to 11 mm and wavelengths from 300 nm to 2 μm. At low power levels, the uncertainty is dominated by sensitivity to fluctuations in the thermal environment. The core of the instrument is a planar, silicon microfabricated bolometer with vertically aligned carbon nanotube absorbers, commercial surface mount thermistors, and an integrated heater. Where possible, commercial electronics and components were used. The performance was validated by comparing it to a National Institute of Standards and Technology primary standard through a transfer standard silicon trap detector and by comparing it to the legacy “C-series” standards in operation at the U.S. Air Force Metrology and Calibration Division (AFMETCAL).</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>33648050</pmid><doi>10.1063/5.0032366</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-2514-4046</orcidid><orcidid>https://orcid.org/0000-0002-8313-9045</orcidid><orcidid>https://orcid.org/0000-0003-4729-7123</orcidid><orcidid>https://orcid.org/0000-0001-6089-2635</orcidid><orcidid>https://orcid.org/0000-0003-1246-4550</orcidid><orcidid>https://orcid.org/0000-0002-5513-8520</orcidid><orcidid>https://orcid.org/0000-0002-6789-8850</orcidid><orcidid>https://orcid.org/0000-0002-7912-6591</orcidid><orcidid>https://orcid.org/0000000279126591</orcidid><orcidid>https://orcid.org/0000000283139045</orcidid><orcidid>https://orcid.org/0000000160892635</orcidid><orcidid>https://orcid.org/0000000325144046</orcidid><orcidid>https://orcid.org/0000000267898850</orcidid><orcidid>https://orcid.org/0000000312464550</orcidid><orcidid>https://orcid.org/0000000255138520</orcidid><orcidid>https://orcid.org/0000000347297123</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0034-6748
ispartof Review of scientific instruments, 2021-02, Vol.92 (2), p.025107-025107
issn 0034-6748
1089-7623
language eng
recordid cdi_proquest_journals_2488025466
source AIP Journals Complete; Alma/SFX Local Collection
subjects Bolometers
Carbon nanotubes
Continuous wave lasers
Diameters
Laser beams
Lasers
Room temperature
Scientific apparatus & instruments
Silicon
Substitutes
Thermal environments
Thermistors
Wavelengths
title Room temperature laser power standard using a microfabricated, electrical substitution bolometer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T20%3A33%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Room%20temperature%20laser%20power%20standard%20using%20a%20microfabricated,%20electrical%20substitution%20bolometer&rft.jtitle=Review%20of%20scientific%20instruments&rft.au=Stephens,%20M.&rft.date=2021-02-01&rft.volume=92&rft.issue=2&rft.spage=025107&rft.epage=025107&rft.pages=025107-025107&rft.issn=0034-6748&rft.eissn=1089-7623&rft.coden=RSINAK&rft_id=info:doi/10.1063/5.0032366&rft_dat=%3Cproquest_scita%3E2495403167%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2488025466&rft_id=info:pmid/33648050&rfr_iscdi=true