Topology design of two-fluid heat exchange

Heat exchangers are devices that typically transfer heat between two fluids. The performance of a heat exchanger such as heat transfer rate and pressure loss strongly depends on the flow regime in the heat transfer system. In this paper, we present a density-based topology optimization method for a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Structural and multidisciplinary optimization 2021-02, Vol.63 (2), p.821-834
Hauptverfasser: Kobayashi, Hiroki, Yaji, Kentaro, Yamasaki, Shintaro, Fujita, Kikuo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 834
container_issue 2
container_start_page 821
container_title Structural and multidisciplinary optimization
container_volume 63
creator Kobayashi, Hiroki
Yaji, Kentaro
Yamasaki, Shintaro
Fujita, Kikuo
description Heat exchangers are devices that typically transfer heat between two fluids. The performance of a heat exchanger such as heat transfer rate and pressure loss strongly depends on the flow regime in the heat transfer system. In this paper, we present a density-based topology optimization method for a two-fluid heat exchange system, which achieves a maximum heat transfer rate under fixed pressure loss. We propose a representation model accounting for three states, i.e., two fluids and a solid wall between the two fluids, by using a single design variable field. The key aspect of the proposed model is that mixing of the two fluids can be essentially prevented. This is because the solid constantly exists between the two fluids due to the use of the single design variable field. We demonstrate the effectiveness of the proposed method through three-dimensional numerical examples in which an optimized design is compared with a simple reference design, and the effects of design conditions (i.e., Reynolds number, Prandtl number, design domain size, and flow arrangements) are investigated.
doi_str_mv 10.1007/s00158-020-02736-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2488023999</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2488023999</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-daf8696cc4797a4d19ec3bc7eca707dfc93f4d01da25a0e754576c10c71f8c193</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOI7-AVcFd0L0Jk2bZCmDLxhwM4K7EPPodKjNmLTo_HszVnTn4nLv4pxzOR9C5wSuCAC_TgCkEhgo5OFljcUBmpGaVJgwIQ5_b_5yjE5S2gCAACZn6HIVtqELza6wLrVNXwRfDB8B-25sbbF2eijcp1nrvnGn6MjrLrmznz1Hz3e3q8UDXj7dPy5ultgwKgdstRe1rI1hXHLNLJHOlK-GO6M5cOuNLD2zQKymlQbHK1bx2hAwnHhhiCzn6GLK3cbwPro0qE0YY59fKprLAC2l3KvopDIxpBSdV9vYvum4UwTUnomamKjMRH0zUSKbysmUsjhXin_R_7i-AIrtY1s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2488023999</pqid></control><display><type>article</type><title>Topology design of two-fluid heat exchange</title><source>SpringerLink Journals - AutoHoldings</source><creator>Kobayashi, Hiroki ; Yaji, Kentaro ; Yamasaki, Shintaro ; Fujita, Kikuo</creator><creatorcontrib>Kobayashi, Hiroki ; Yaji, Kentaro ; Yamasaki, Shintaro ; Fujita, Kikuo</creatorcontrib><description>Heat exchangers are devices that typically transfer heat between two fluids. The performance of a heat exchanger such as heat transfer rate and pressure loss strongly depends on the flow regime in the heat transfer system. In this paper, we present a density-based topology optimization method for a two-fluid heat exchange system, which achieves a maximum heat transfer rate under fixed pressure loss. We propose a representation model accounting for three states, i.e., two fluids and a solid wall between the two fluids, by using a single design variable field. The key aspect of the proposed model is that mixing of the two fluids can be essentially prevented. This is because the solid constantly exists between the two fluids due to the use of the single design variable field. We demonstrate the effectiveness of the proposed method through three-dimensional numerical examples in which an optimized design is compared with a simple reference design, and the effects of design conditions (i.e., Reynolds number, Prandtl number, design domain size, and flow arrangements) are investigated.</description><identifier>ISSN: 1615-147X</identifier><identifier>EISSN: 1615-1488</identifier><identifier>DOI: 10.1007/s00158-020-02736-8</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Accounting ; Computational fluid dynamics ; Computational Mathematics and Numerical Analysis ; Design optimization ; Engineering ; Engineering Design ; Fluid flow ; Heat exchange ; Heat exchangers ; Heat transfer ; Prandtl number ; Pressure loss ; Research Paper ; Reynolds number ; Theoretical and Applied Mechanics ; Topology optimization</subject><ispartof>Structural and multidisciplinary optimization, 2021-02, Vol.63 (2), p.821-834</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-daf8696cc4797a4d19ec3bc7eca707dfc93f4d01da25a0e754576c10c71f8c193</citedby><cites>FETCH-LOGICAL-c429t-daf8696cc4797a4d19ec3bc7eca707dfc93f4d01da25a0e754576c10c71f8c193</cites><orcidid>0000-0002-4309-2043</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00158-020-02736-8$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00158-020-02736-8$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Kobayashi, Hiroki</creatorcontrib><creatorcontrib>Yaji, Kentaro</creatorcontrib><creatorcontrib>Yamasaki, Shintaro</creatorcontrib><creatorcontrib>Fujita, Kikuo</creatorcontrib><title>Topology design of two-fluid heat exchange</title><title>Structural and multidisciplinary optimization</title><addtitle>Struct Multidisc Optim</addtitle><description>Heat exchangers are devices that typically transfer heat between two fluids. The performance of a heat exchanger such as heat transfer rate and pressure loss strongly depends on the flow regime in the heat transfer system. In this paper, we present a density-based topology optimization method for a two-fluid heat exchange system, which achieves a maximum heat transfer rate under fixed pressure loss. We propose a representation model accounting for three states, i.e., two fluids and a solid wall between the two fluids, by using a single design variable field. The key aspect of the proposed model is that mixing of the two fluids can be essentially prevented. This is because the solid constantly exists between the two fluids due to the use of the single design variable field. We demonstrate the effectiveness of the proposed method through three-dimensional numerical examples in which an optimized design is compared with a simple reference design, and the effects of design conditions (i.e., Reynolds number, Prandtl number, design domain size, and flow arrangements) are investigated.</description><subject>Accounting</subject><subject>Computational fluid dynamics</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Design optimization</subject><subject>Engineering</subject><subject>Engineering Design</subject><subject>Fluid flow</subject><subject>Heat exchange</subject><subject>Heat exchangers</subject><subject>Heat transfer</subject><subject>Prandtl number</subject><subject>Pressure loss</subject><subject>Research Paper</subject><subject>Reynolds number</subject><subject>Theoretical and Applied Mechanics</subject><subject>Topology optimization</subject><issn>1615-147X</issn><issn>1615-1488</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kEtLxDAUhYMoOI7-AVcFd0L0Jk2bZCmDLxhwM4K7EPPodKjNmLTo_HszVnTn4nLv4pxzOR9C5wSuCAC_TgCkEhgo5OFljcUBmpGaVJgwIQ5_b_5yjE5S2gCAACZn6HIVtqELza6wLrVNXwRfDB8B-25sbbF2eijcp1nrvnGn6MjrLrmznz1Hz3e3q8UDXj7dPy5ultgwKgdstRe1rI1hXHLNLJHOlK-GO6M5cOuNLD2zQKymlQbHK1bx2hAwnHhhiCzn6GLK3cbwPro0qE0YY59fKprLAC2l3KvopDIxpBSdV9vYvum4UwTUnomamKjMRH0zUSKbysmUsjhXin_R_7i-AIrtY1s</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Kobayashi, Hiroki</creator><creator>Yaji, Kentaro</creator><creator>Yamasaki, Shintaro</creator><creator>Fujita, Kikuo</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-4309-2043</orcidid></search><sort><creationdate>20210201</creationdate><title>Topology design of two-fluid heat exchange</title><author>Kobayashi, Hiroki ; Yaji, Kentaro ; Yamasaki, Shintaro ; Fujita, Kikuo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-daf8696cc4797a4d19ec3bc7eca707dfc93f4d01da25a0e754576c10c71f8c193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accounting</topic><topic>Computational fluid dynamics</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Design optimization</topic><topic>Engineering</topic><topic>Engineering Design</topic><topic>Fluid flow</topic><topic>Heat exchange</topic><topic>Heat exchangers</topic><topic>Heat transfer</topic><topic>Prandtl number</topic><topic>Pressure loss</topic><topic>Research Paper</topic><topic>Reynolds number</topic><topic>Theoretical and Applied Mechanics</topic><topic>Topology optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kobayashi, Hiroki</creatorcontrib><creatorcontrib>Yaji, Kentaro</creatorcontrib><creatorcontrib>Yamasaki, Shintaro</creatorcontrib><creatorcontrib>Fujita, Kikuo</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Structural and multidisciplinary optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kobayashi, Hiroki</au><au>Yaji, Kentaro</au><au>Yamasaki, Shintaro</au><au>Fujita, Kikuo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Topology design of two-fluid heat exchange</atitle><jtitle>Structural and multidisciplinary optimization</jtitle><stitle>Struct Multidisc Optim</stitle><date>2021-02-01</date><risdate>2021</risdate><volume>63</volume><issue>2</issue><spage>821</spage><epage>834</epage><pages>821-834</pages><issn>1615-147X</issn><eissn>1615-1488</eissn><abstract>Heat exchangers are devices that typically transfer heat between two fluids. The performance of a heat exchanger such as heat transfer rate and pressure loss strongly depends on the flow regime in the heat transfer system. In this paper, we present a density-based topology optimization method for a two-fluid heat exchange system, which achieves a maximum heat transfer rate under fixed pressure loss. We propose a representation model accounting for three states, i.e., two fluids and a solid wall between the two fluids, by using a single design variable field. The key aspect of the proposed model is that mixing of the two fluids can be essentially prevented. This is because the solid constantly exists between the two fluids due to the use of the single design variable field. We demonstrate the effectiveness of the proposed method through three-dimensional numerical examples in which an optimized design is compared with a simple reference design, and the effects of design conditions (i.e., Reynolds number, Prandtl number, design domain size, and flow arrangements) are investigated.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00158-020-02736-8</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-4309-2043</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1615-147X
ispartof Structural and multidisciplinary optimization, 2021-02, Vol.63 (2), p.821-834
issn 1615-147X
1615-1488
language eng
recordid cdi_proquest_journals_2488023999
source SpringerLink Journals - AutoHoldings
subjects Accounting
Computational fluid dynamics
Computational Mathematics and Numerical Analysis
Design optimization
Engineering
Engineering Design
Fluid flow
Heat exchange
Heat exchangers
Heat transfer
Prandtl number
Pressure loss
Research Paper
Reynolds number
Theoretical and Applied Mechanics
Topology optimization
title Topology design of two-fluid heat exchange
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T11%3A52%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Topology%20design%20of%20two-fluid%20heat%20exchange&rft.jtitle=Structural%20and%20multidisciplinary%20optimization&rft.au=Kobayashi,%20Hiroki&rft.date=2021-02-01&rft.volume=63&rft.issue=2&rft.spage=821&rft.epage=834&rft.pages=821-834&rft.issn=1615-147X&rft.eissn=1615-1488&rft_id=info:doi/10.1007/s00158-020-02736-8&rft_dat=%3Cproquest_cross%3E2488023999%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2488023999&rft_id=info:pmid/&rfr_iscdi=true