Oxyacetylene ablation resistance of continuous gradient ceramic–polymer composite

•A successful preparation of continuous gradient ceramic–polymer gradient composite with a thickness of 40 mm.•Studied the oxyacetylene ablation properties and mechanism of continuous gradient ceramic–polymer composite.•Put forward a novel structure concept for the integrated design of thermal prote...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Corrosion science 2021-02, Vol.179, p.109050, Article 109050
Hauptverfasser: Hu, Zhaocai, Meng, Songhe, Yi, Fajun, Li, Jinping, Xu, Chenghai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 109050
container_title Corrosion science
container_volume 179
creator Hu, Zhaocai
Meng, Songhe
Yi, Fajun
Li, Jinping
Xu, Chenghai
description •A successful preparation of continuous gradient ceramic–polymer gradient composite with a thickness of 40 mm.•Studied the oxyacetylene ablation properties and mechanism of continuous gradient ceramic–polymer composite.•Put forward a novel structure concept for the integrated design of thermal protection system. In this study, the ablation mechanism and ablation properties of continuous gradient ceramic–polymer composites were studied in an oxyacetylene environment, with the ablation heat flow being 2.38 MW/m2. The samples were prepared through six impregnation–crosslinking–pyrolysis cycles using a three-dimensional seven-directional carbon fiber preform. There were no noticeable ablation pits on the surface of ablated samples. The polysilazane coating and amorphous SiCN ceramics provided good protection for the surface of gradient material. The continuous gradient structure provides a new solution to the problems of thermal mismatch and thermal short-circuit, which are caused by the performance difference between materials.
doi_str_mv 10.1016/j.corsci.2020.109050
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2488023738</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010938X20319351</els_id><sourcerecordid>2488023738</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-2b75018e686eb64e8761a9018df39d54e8c15252c1b12569effb4d1607dee4f3</originalsourceid><addsrcrecordid>eNp9kMtKxDAUhoMoOI6-gYuC644n6S3dCDJ4A2EWzsJdSNNTSWmbmqRid76Db-iTmKGuXR34-f5zOB8hlxQ2FGh-3W6UsU7pDQN2iErI4IisKC_KGNIyPyYrAApxmfDXU3LmXAsQSAor8rL7nKVCP3c4YCSrTnpthsii087LQWFkmkiZwethMpOL3qysNQ4-Umhlr9XP1_dourlHG6h-NE57PCcnjewcXvzNNdnf3-23j_Hz7uFpe_scqyRJfcyqIgPKMec5VnmKvMipLENSN0lZZyFQNGMZU7SiLMtLbJoqrWkORY2YNsmaXC1rR2veJ3RetGayQ7goWMo5sKRIeKDShVLWOGexEaPVvbSzoCAO9kQrFnviYE8s9kLtZqlheOBDoxWBwOCj1haVF7XR_y_4Bd-9fGM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2488023738</pqid></control><display><type>article</type><title>Oxyacetylene ablation resistance of continuous gradient ceramic–polymer composite</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Hu, Zhaocai ; Meng, Songhe ; Yi, Fajun ; Li, Jinping ; Xu, Chenghai</creator><creatorcontrib>Hu, Zhaocai ; Meng, Songhe ; Yi, Fajun ; Li, Jinping ; Xu, Chenghai</creatorcontrib><description>•A successful preparation of continuous gradient ceramic–polymer gradient composite with a thickness of 40 mm.•Studied the oxyacetylene ablation properties and mechanism of continuous gradient ceramic–polymer composite.•Put forward a novel structure concept for the integrated design of thermal protection system. In this study, the ablation mechanism and ablation properties of continuous gradient ceramic–polymer composites were studied in an oxyacetylene environment, with the ablation heat flow being 2.38 MW/m2. The samples were prepared through six impregnation–crosslinking–pyrolysis cycles using a three-dimensional seven-directional carbon fiber preform. There were no noticeable ablation pits on the surface of ablated samples. The polysilazane coating and amorphous SiCN ceramics provided good protection for the surface of gradient material. The continuous gradient structure provides a new solution to the problems of thermal mismatch and thermal short-circuit, which are caused by the performance difference between materials.</description><identifier>ISSN: 0010-938X</identifier><identifier>EISSN: 1879-0496</identifier><identifier>DOI: 10.1016/j.corsci.2020.109050</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>A. Ceramic ; Ablation ; Amorphous materials ; B. SEM ; B. XRD ; C. High temperature corrosion ; C. Oxidation ; Carbon fibers ; Ceramic coatings ; Ceramics ; Crosslinking ; Fiber preforms ; Heat transmission ; Oxyacetylene ; Polymer matrix composites ; Polymers ; Polysilazane ; Pyrolysis ; Short circuits ; Thermal mismatch</subject><ispartof>Corrosion science, 2021-02, Vol.179, p.109050, Article 109050</ispartof><rights>2020</rights><rights>Copyright Elsevier BV Feb 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-2b75018e686eb64e8761a9018df39d54e8c15252c1b12569effb4d1607dee4f3</citedby><cites>FETCH-LOGICAL-c334t-2b75018e686eb64e8761a9018df39d54e8c15252c1b12569effb4d1607dee4f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.corsci.2020.109050$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27922,27923,45993</link.rule.ids></links><search><creatorcontrib>Hu, Zhaocai</creatorcontrib><creatorcontrib>Meng, Songhe</creatorcontrib><creatorcontrib>Yi, Fajun</creatorcontrib><creatorcontrib>Li, Jinping</creatorcontrib><creatorcontrib>Xu, Chenghai</creatorcontrib><title>Oxyacetylene ablation resistance of continuous gradient ceramic–polymer composite</title><title>Corrosion science</title><description>•A successful preparation of continuous gradient ceramic–polymer gradient composite with a thickness of 40 mm.•Studied the oxyacetylene ablation properties and mechanism of continuous gradient ceramic–polymer composite.•Put forward a novel structure concept for the integrated design of thermal protection system. In this study, the ablation mechanism and ablation properties of continuous gradient ceramic–polymer composites were studied in an oxyacetylene environment, with the ablation heat flow being 2.38 MW/m2. The samples were prepared through six impregnation–crosslinking–pyrolysis cycles using a three-dimensional seven-directional carbon fiber preform. There were no noticeable ablation pits on the surface of ablated samples. The polysilazane coating and amorphous SiCN ceramics provided good protection for the surface of gradient material. The continuous gradient structure provides a new solution to the problems of thermal mismatch and thermal short-circuit, which are caused by the performance difference between materials.</description><subject>A. Ceramic</subject><subject>Ablation</subject><subject>Amorphous materials</subject><subject>B. SEM</subject><subject>B. XRD</subject><subject>C. High temperature corrosion</subject><subject>C. Oxidation</subject><subject>Carbon fibers</subject><subject>Ceramic coatings</subject><subject>Ceramics</subject><subject>Crosslinking</subject><subject>Fiber preforms</subject><subject>Heat transmission</subject><subject>Oxyacetylene</subject><subject>Polymer matrix composites</subject><subject>Polymers</subject><subject>Polysilazane</subject><subject>Pyrolysis</subject><subject>Short circuits</subject><subject>Thermal mismatch</subject><issn>0010-938X</issn><issn>1879-0496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKxDAUhoMoOI6-gYuC644n6S3dCDJ4A2EWzsJdSNNTSWmbmqRid76Db-iTmKGuXR34-f5zOB8hlxQ2FGh-3W6UsU7pDQN2iErI4IisKC_KGNIyPyYrAApxmfDXU3LmXAsQSAor8rL7nKVCP3c4YCSrTnpthsii087LQWFkmkiZwethMpOL3qysNQ4-Umhlr9XP1_dourlHG6h-NE57PCcnjewcXvzNNdnf3-23j_Hz7uFpe_scqyRJfcyqIgPKMec5VnmKvMipLENSN0lZZyFQNGMZU7SiLMtLbJoqrWkORY2YNsmaXC1rR2veJ3RetGayQ7goWMo5sKRIeKDShVLWOGexEaPVvbSzoCAO9kQrFnviYE8s9kLtZqlheOBDoxWBwOCj1haVF7XR_y_4Bd-9fGM</recordid><startdate>202102</startdate><enddate>202102</enddate><creator>Hu, Zhaocai</creator><creator>Meng, Songhe</creator><creator>Yi, Fajun</creator><creator>Li, Jinping</creator><creator>Xu, Chenghai</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SE</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope></search><sort><creationdate>202102</creationdate><title>Oxyacetylene ablation resistance of continuous gradient ceramic–polymer composite</title><author>Hu, Zhaocai ; Meng, Songhe ; Yi, Fajun ; Li, Jinping ; Xu, Chenghai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-2b75018e686eb64e8761a9018df39d54e8c15252c1b12569effb4d1607dee4f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>A. Ceramic</topic><topic>Ablation</topic><topic>Amorphous materials</topic><topic>B. SEM</topic><topic>B. XRD</topic><topic>C. High temperature corrosion</topic><topic>C. Oxidation</topic><topic>Carbon fibers</topic><topic>Ceramic coatings</topic><topic>Ceramics</topic><topic>Crosslinking</topic><topic>Fiber preforms</topic><topic>Heat transmission</topic><topic>Oxyacetylene</topic><topic>Polymer matrix composites</topic><topic>Polymers</topic><topic>Polysilazane</topic><topic>Pyrolysis</topic><topic>Short circuits</topic><topic>Thermal mismatch</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Zhaocai</creatorcontrib><creatorcontrib>Meng, Songhe</creatorcontrib><creatorcontrib>Yi, Fajun</creatorcontrib><creatorcontrib>Li, Jinping</creatorcontrib><creatorcontrib>Xu, Chenghai</creatorcontrib><collection>CrossRef</collection><collection>Corrosion Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><jtitle>Corrosion science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Zhaocai</au><au>Meng, Songhe</au><au>Yi, Fajun</au><au>Li, Jinping</au><au>Xu, Chenghai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Oxyacetylene ablation resistance of continuous gradient ceramic–polymer composite</atitle><jtitle>Corrosion science</jtitle><date>2021-02</date><risdate>2021</risdate><volume>179</volume><spage>109050</spage><pages>109050-</pages><artnum>109050</artnum><issn>0010-938X</issn><eissn>1879-0496</eissn><abstract>•A successful preparation of continuous gradient ceramic–polymer gradient composite with a thickness of 40 mm.•Studied the oxyacetylene ablation properties and mechanism of continuous gradient ceramic–polymer composite.•Put forward a novel structure concept for the integrated design of thermal protection system. In this study, the ablation mechanism and ablation properties of continuous gradient ceramic–polymer composites were studied in an oxyacetylene environment, with the ablation heat flow being 2.38 MW/m2. The samples were prepared through six impregnation–crosslinking–pyrolysis cycles using a three-dimensional seven-directional carbon fiber preform. There were no noticeable ablation pits on the surface of ablated samples. The polysilazane coating and amorphous SiCN ceramics provided good protection for the surface of gradient material. The continuous gradient structure provides a new solution to the problems of thermal mismatch and thermal short-circuit, which are caused by the performance difference between materials.</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.corsci.2020.109050</doi></addata></record>
fulltext fulltext
identifier ISSN: 0010-938X
ispartof Corrosion science, 2021-02, Vol.179, p.109050, Article 109050
issn 0010-938X
1879-0496
language eng
recordid cdi_proquest_journals_2488023738
source Elsevier ScienceDirect Journals Complete
subjects A. Ceramic
Ablation
Amorphous materials
B. SEM
B. XRD
C. High temperature corrosion
C. Oxidation
Carbon fibers
Ceramic coatings
Ceramics
Crosslinking
Fiber preforms
Heat transmission
Oxyacetylene
Polymer matrix composites
Polymers
Polysilazane
Pyrolysis
Short circuits
Thermal mismatch
title Oxyacetylene ablation resistance of continuous gradient ceramic–polymer composite
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T15%3A36%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Oxyacetylene%20ablation%20resistance%20of%20continuous%20gradient%20ceramic%E2%80%93polymer%20composite&rft.jtitle=Corrosion%20science&rft.au=Hu,%20Zhaocai&rft.date=2021-02&rft.volume=179&rft.spage=109050&rft.pages=109050-&rft.artnum=109050&rft.issn=0010-938X&rft.eissn=1879-0496&rft_id=info:doi/10.1016/j.corsci.2020.109050&rft_dat=%3Cproquest_cross%3E2488023738%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2488023738&rft_id=info:pmid/&rft_els_id=S0010938X20319351&rfr_iscdi=true