Magic sets for polynomials of degree n

Let Pn be the family of all real, non-constant polynomials with degree at most n and let Qn be the family of all complex, non-constant polynomials with degree at most n. A set S⊆R is called a set of range uniqueness (SRU) for a family F∈{Pn,Qn} if for all f,g∈F, f[S]=g[S]⇒f=g. And S is called a magi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Linear algebra and its applications 2021-01, Vol.609, p.413-441
Hauptverfasser: Halbeisen, Lorenz, Hungerbühler, Norbert, Schumacher, Salome
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 441
container_issue
container_start_page 413
container_title Linear algebra and its applications
container_volume 609
creator Halbeisen, Lorenz
Hungerbühler, Norbert
Schumacher, Salome
description Let Pn be the family of all real, non-constant polynomials with degree at most n and let Qn be the family of all complex, non-constant polynomials with degree at most n. A set S⊆R is called a set of range uniqueness (SRU) for a family F∈{Pn,Qn} if for all f,g∈F, f[S]=g[S]⇒f=g. And S is called a magic set if for all f,g∈F, f[S]⊆g[S]⇒f=g. In this paper we will show that there are magic sets for Pn and Qn of size s for every s≥2n+1. However, there are no SRUs of size at most 2n for Pn and Qn. Moreover we will show that SRUs and magic sets are not the same by giving examples of SRUs for P2 and P3 that are not magic.
doi_str_mv 10.1016/j.laa.2020.09.026
format Article
fullrecord <record><control><sourceid>proquest_elsev</sourceid><recordid>TN_cdi_proquest_journals_2488017821</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0024379520304481</els_id><sourcerecordid>2488017821</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-b1c022a65c1de9bd52d86ae9b02b59d41f1f3d028692161b959310a1f9cb6cf13</originalsourceid><addsrcrecordid>eNqNkE1LAzEQhoMoWKs_wNuC4EV2ncl2swmepPgFFS96DtlsUrK0m5pslf57U7Z4FE8zDO8zMzyEXCIUCMhuu2KlVEGBQgGiAMqOyAR5XebIK3ZMJgB0lpe1qE7JWYwdAMxqoBNy_aqWTmfRDDGzPmQbv9r1fu3UKmbeZq1ZBmOy_pyc2DQyF4c6JR-PD-_z53zx9vQyv1_kumR8yBvUQKlilcbWiKataMuZSh3QphLtDC3asgXKmaDIsBGVKBEUWqEbpi2WU3I17t0E_7k1cZCd34Y-nZR0xjlgzek-hWNKBx9jMFZuglursJMIcq9DdjLpkHsdEoRMOhLDR-bbNN5G7UyvzS-XfFQc6xKq1FE6d4ManO_nftsPCb35P5rSd2PaJE9fzgR5IFoXjB5k690fb_4AdQuGFQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2488017821</pqid></control><display><type>article</type><title>Magic sets for polynomials of degree n</title><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>Access via ScienceDirect (Elsevier)</source><creator>Halbeisen, Lorenz ; Hungerbühler, Norbert ; Schumacher, Salome</creator><creatorcontrib>Halbeisen, Lorenz ; Hungerbühler, Norbert ; Schumacher, Salome</creatorcontrib><description>Let Pn be the family of all real, non-constant polynomials with degree at most n and let Qn be the family of all complex, non-constant polynomials with degree at most n. A set S⊆R is called a set of range uniqueness (SRU) for a family F∈{Pn,Qn} if for all f,g∈F, f[S]=g[S]⇒f=g. And S is called a magic set if for all f,g∈F, f[S]⊆g[S]⇒f=g. In this paper we will show that there are magic sets for Pn and Qn of size s for every s≥2n+1. However, there are no SRUs of size at most 2n for Pn and Qn. Moreover we will show that SRUs and magic sets are not the same by giving examples of SRUs for P2 and P3 that are not magic.</description><identifier>ISSN: 0024-3795</identifier><identifier>EISSN: 1873-1856</identifier><identifier>DOI: 10.1016/j.laa.2020.09.026</identifier><language>eng</language><publisher>NEW YORK: Elsevier Inc</publisher><subject>Linear algebra ; Magic sets ; Mathematics ; Mathematics, Applied ; Physical Sciences ; Polynomials ; Science &amp; Technology ; Sets of range uniqueness ; Unique range</subject><ispartof>Linear algebra and its applications, 2021-01, Vol.609, p.413-441</ispartof><rights>2020 The Authors</rights><rights>Copyright American Elsevier Company, Inc. Jan 15, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>2</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000581730500022</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c368t-b1c022a65c1de9bd52d86ae9b02b59d41f1f3d028692161b959310a1f9cb6cf13</citedby><cites>FETCH-LOGICAL-c368t-b1c022a65c1de9bd52d86ae9b02b59d41f1f3d028692161b959310a1f9cb6cf13</cites><orcidid>0000-0001-6191-0022 ; 0000-0001-6078-7237</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.laa.2020.09.026$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>315,781,785,3551,27928,27929,39262,45999</link.rule.ids></links><search><creatorcontrib>Halbeisen, Lorenz</creatorcontrib><creatorcontrib>Hungerbühler, Norbert</creatorcontrib><creatorcontrib>Schumacher, Salome</creatorcontrib><title>Magic sets for polynomials of degree n</title><title>Linear algebra and its applications</title><addtitle>LINEAR ALGEBRA APPL</addtitle><description>Let Pn be the family of all real, non-constant polynomials with degree at most n and let Qn be the family of all complex, non-constant polynomials with degree at most n. A set S⊆R is called a set of range uniqueness (SRU) for a family F∈{Pn,Qn} if for all f,g∈F, f[S]=g[S]⇒f=g. And S is called a magic set if for all f,g∈F, f[S]⊆g[S]⇒f=g. In this paper we will show that there are magic sets for Pn and Qn of size s for every s≥2n+1. However, there are no SRUs of size at most 2n for Pn and Qn. Moreover we will show that SRUs and magic sets are not the same by giving examples of SRUs for P2 and P3 that are not magic.</description><subject>Linear algebra</subject><subject>Magic sets</subject><subject>Mathematics</subject><subject>Mathematics, Applied</subject><subject>Physical Sciences</subject><subject>Polynomials</subject><subject>Science &amp; Technology</subject><subject>Sets of range uniqueness</subject><subject>Unique range</subject><issn>0024-3795</issn><issn>1873-1856</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><recordid>eNqNkE1LAzEQhoMoWKs_wNuC4EV2ncl2swmepPgFFS96DtlsUrK0m5pslf57U7Z4FE8zDO8zMzyEXCIUCMhuu2KlVEGBQgGiAMqOyAR5XebIK3ZMJgB0lpe1qE7JWYwdAMxqoBNy_aqWTmfRDDGzPmQbv9r1fu3UKmbeZq1ZBmOy_pyc2DQyF4c6JR-PD-_z53zx9vQyv1_kumR8yBvUQKlilcbWiKataMuZSh3QphLtDC3asgXKmaDIsBGVKBEUWqEbpi2WU3I17t0E_7k1cZCd34Y-nZR0xjlgzek-hWNKBx9jMFZuglursJMIcq9DdjLpkHsdEoRMOhLDR-bbNN5G7UyvzS-XfFQc6xKq1FE6d4ManO_nftsPCb35P5rSd2PaJE9fzgR5IFoXjB5k690fb_4AdQuGFQ</recordid><startdate>20210115</startdate><enddate>20210115</enddate><creator>Halbeisen, Lorenz</creator><creator>Hungerbühler, Norbert</creator><creator>Schumacher, Salome</creator><general>Elsevier Inc</general><general>Elsevier</general><general>American Elsevier Company, Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-6191-0022</orcidid><orcidid>https://orcid.org/0000-0001-6078-7237</orcidid></search><sort><creationdate>20210115</creationdate><title>Magic sets for polynomials of degree n</title><author>Halbeisen, Lorenz ; Hungerbühler, Norbert ; Schumacher, Salome</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-b1c022a65c1de9bd52d86ae9b02b59d41f1f3d028692161b959310a1f9cb6cf13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Linear algebra</topic><topic>Magic sets</topic><topic>Mathematics</topic><topic>Mathematics, Applied</topic><topic>Physical Sciences</topic><topic>Polynomials</topic><topic>Science &amp; Technology</topic><topic>Sets of range uniqueness</topic><topic>Unique range</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Halbeisen, Lorenz</creatorcontrib><creatorcontrib>Hungerbühler, Norbert</creatorcontrib><creatorcontrib>Schumacher, Salome</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Linear algebra and its applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Halbeisen, Lorenz</au><au>Hungerbühler, Norbert</au><au>Schumacher, Salome</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magic sets for polynomials of degree n</atitle><jtitle>Linear algebra and its applications</jtitle><stitle>LINEAR ALGEBRA APPL</stitle><date>2021-01-15</date><risdate>2021</risdate><volume>609</volume><spage>413</spage><epage>441</epage><pages>413-441</pages><issn>0024-3795</issn><eissn>1873-1856</eissn><abstract>Let Pn be the family of all real, non-constant polynomials with degree at most n and let Qn be the family of all complex, non-constant polynomials with degree at most n. A set S⊆R is called a set of range uniqueness (SRU) for a family F∈{Pn,Qn} if for all f,g∈F, f[S]=g[S]⇒f=g. And S is called a magic set if for all f,g∈F, f[S]⊆g[S]⇒f=g. In this paper we will show that there are magic sets for Pn and Qn of size s for every s≥2n+1. However, there are no SRUs of size at most 2n for Pn and Qn. Moreover we will show that SRUs and magic sets are not the same by giving examples of SRUs for P2 and P3 that are not magic.</abstract><cop>NEW YORK</cop><pub>Elsevier Inc</pub><doi>10.1016/j.laa.2020.09.026</doi><tpages>29</tpages><orcidid>https://orcid.org/0000-0001-6191-0022</orcidid><orcidid>https://orcid.org/0000-0001-6078-7237</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0024-3795
ispartof Linear algebra and its applications, 2021-01, Vol.609, p.413-441
issn 0024-3795
1873-1856
language eng
recordid cdi_proquest_journals_2488017821
source Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Access via ScienceDirect (Elsevier)
subjects Linear algebra
Magic sets
Mathematics
Mathematics, Applied
Physical Sciences
Polynomials
Science & Technology
Sets of range uniqueness
Unique range
title Magic sets for polynomials of degree n
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T20%3A18%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_elsev&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magic%20sets%20for%20polynomials%20of%20degree%20n&rft.jtitle=Linear%20algebra%20and%20its%20applications&rft.au=Halbeisen,%20Lorenz&rft.date=2021-01-15&rft.volume=609&rft.spage=413&rft.epage=441&rft.pages=413-441&rft.issn=0024-3795&rft.eissn=1873-1856&rft_id=info:doi/10.1016/j.laa.2020.09.026&rft_dat=%3Cproquest_elsev%3E2488017821%3C/proquest_elsev%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2488017821&rft_id=info:pmid/&rft_els_id=S0024379520304481&rfr_iscdi=true