A neural network approach for improving airfoil active flutter suppression under control-input constraints
This study deals with improving airfoil active flutter suppression under control-input constraints from the optimal control perspective by proposing a novel optimal neural-network control. The proposed approach uses a modified value function approximation dynamically tuned by an extended Kalman filt...
Gespeichert in:
Veröffentlicht in: | Journal of vibration and control 2021-02, Vol.27 (3-4), p.451-467 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 467 |
---|---|
container_issue | 3-4 |
container_start_page | 451 |
container_title | Journal of vibration and control |
container_volume | 27 |
creator | Tang, Difan Chen, Lei Tian, Zhao F Hu, Eric |
description | This study deals with improving airfoil active flutter suppression under control-input constraints from the optimal control perspective by proposing a novel optimal neural-network control. The proposed approach uses a modified value function approximation dynamically tuned by an extended Kalman filter to solve the Hamilton–Jacobi–Bellman equality online for continuously improved optimal control to address optimality in parameter-varying nonlinear systems. Control-input constraints are integrated into the controller synthesis by introducing a generalized nonquadratic cost function for control inputs. The feasibility of using a performance index involving the nonquadratic control-input cost with the modified value function approximation is examined through the Lyapunov stability analysis. Wind tunnel experiments were conducted for controller validation, where an optimal controller synthesized offline via linear parameter-varying technique was used as a benchmark and compared. It is shown, both theoretically and experimentally, that the proposed method can effectively improve airfoil active flutter suppression under control-input constraints. |
doi_str_mv | 10.1177/1077546320929153 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2487750909</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_1077546320929153</sage_id><sourcerecordid>2487750909</sourcerecordid><originalsourceid>FETCH-LOGICAL-c309t-d786facbbf6fd6800e46151df44b94bd307516c48aeb5a10afea1ab60882da6c3</originalsourceid><addsrcrecordid>eNp1UMFKxDAQDaLgunr3GPBcnbRp2h6XRV1hwYueyzRN1qzdpCbpin9vlhUEwdObmffmzfAIuWZwy1hV3TGoqpKLIocmb1hZnJAZqzjL8qYWp6lOdHbgz8lFCFsA4JzBjGwX1KrJ45Agfjr_TnEcvUP5RrXz1OxSszd2Q9F47cxAUUazV1QPU4zK0zAluQrBOEsn26eJdDZ6N2TGjlM8dCF6NDaGS3KmcQjq6gfn5PXh_mW5ytbPj0_LxTqTBTQx66taaJRdp4XuRQ2guGAl6zXnXcO7voCqZELyGlVXIgPUChl2Auo671HIYk5ujr7p9Y9Jhdhu3eRtOtnmvE4pQQNNUsFRJb0LwSvdjt7s0H-1DNpDou3fRNNKdlwJuFG_pv_qvwG3B3iZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2487750909</pqid></control><display><type>article</type><title>A neural network approach for improving airfoil active flutter suppression under control-input constraints</title><source>SAGE Complete A-Z List</source><creator>Tang, Difan ; Chen, Lei ; Tian, Zhao F ; Hu, Eric</creator><creatorcontrib>Tang, Difan ; Chen, Lei ; Tian, Zhao F ; Hu, Eric</creatorcontrib><description>This study deals with improving airfoil active flutter suppression under control-input constraints from the optimal control perspective by proposing a novel optimal neural-network control. The proposed approach uses a modified value function approximation dynamically tuned by an extended Kalman filter to solve the Hamilton–Jacobi–Bellman equality online for continuously improved optimal control to address optimality in parameter-varying nonlinear systems. Control-input constraints are integrated into the controller synthesis by introducing a generalized nonquadratic cost function for control inputs. The feasibility of using a performance index involving the nonquadratic control-input cost with the modified value function approximation is examined through the Lyapunov stability analysis. Wind tunnel experiments were conducted for controller validation, where an optimal controller synthesized offline via linear parameter-varying technique was used as a benchmark and compared. It is shown, both theoretically and experimentally, that the proposed method can effectively improve airfoil active flutter suppression under control-input constraints.</description><identifier>ISSN: 1077-5463</identifier><identifier>EISSN: 1741-2986</identifier><identifier>DOI: 10.1177/1077546320929153</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Active control ; Approximation ; Control stability ; Controllers ; Cost function ; Extended Kalman filter ; Flutter ; Mathematical analysis ; Network control ; Neural networks ; Nonlinear control ; Nonlinear systems ; Optimal control ; Optimization ; Parameters ; Performance indices ; Stability analysis ; Vibration ; Wind tunnel testing ; Wind tunnels</subject><ispartof>Journal of vibration and control, 2021-02, Vol.27 (3-4), p.451-467</ispartof><rights>The Author(s) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c309t-d786facbbf6fd6800e46151df44b94bd307516c48aeb5a10afea1ab60882da6c3</citedby><cites>FETCH-LOGICAL-c309t-d786facbbf6fd6800e46151df44b94bd307516c48aeb5a10afea1ab60882da6c3</cites><orcidid>0000-0002-7143-0441</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/1077546320929153$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/1077546320929153$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,776,780,21798,27901,27902,43597,43598</link.rule.ids></links><search><creatorcontrib>Tang, Difan</creatorcontrib><creatorcontrib>Chen, Lei</creatorcontrib><creatorcontrib>Tian, Zhao F</creatorcontrib><creatorcontrib>Hu, Eric</creatorcontrib><title>A neural network approach for improving airfoil active flutter suppression under control-input constraints</title><title>Journal of vibration and control</title><description>This study deals with improving airfoil active flutter suppression under control-input constraints from the optimal control perspective by proposing a novel optimal neural-network control. The proposed approach uses a modified value function approximation dynamically tuned by an extended Kalman filter to solve the Hamilton–Jacobi–Bellman equality online for continuously improved optimal control to address optimality in parameter-varying nonlinear systems. Control-input constraints are integrated into the controller synthesis by introducing a generalized nonquadratic cost function for control inputs. The feasibility of using a performance index involving the nonquadratic control-input cost with the modified value function approximation is examined through the Lyapunov stability analysis. Wind tunnel experiments were conducted for controller validation, where an optimal controller synthesized offline via linear parameter-varying technique was used as a benchmark and compared. It is shown, both theoretically and experimentally, that the proposed method can effectively improve airfoil active flutter suppression under control-input constraints.</description><subject>Active control</subject><subject>Approximation</subject><subject>Control stability</subject><subject>Controllers</subject><subject>Cost function</subject><subject>Extended Kalman filter</subject><subject>Flutter</subject><subject>Mathematical analysis</subject><subject>Network control</subject><subject>Neural networks</subject><subject>Nonlinear control</subject><subject>Nonlinear systems</subject><subject>Optimal control</subject><subject>Optimization</subject><subject>Parameters</subject><subject>Performance indices</subject><subject>Stability analysis</subject><subject>Vibration</subject><subject>Wind tunnel testing</subject><subject>Wind tunnels</subject><issn>1077-5463</issn><issn>1741-2986</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1UMFKxDAQDaLgunr3GPBcnbRp2h6XRV1hwYueyzRN1qzdpCbpin9vlhUEwdObmffmzfAIuWZwy1hV3TGoqpKLIocmb1hZnJAZqzjL8qYWp6lOdHbgz8lFCFsA4JzBjGwX1KrJ45Agfjr_TnEcvUP5RrXz1OxSszd2Q9F47cxAUUazV1QPU4zK0zAluQrBOEsn26eJdDZ6N2TGjlM8dCF6NDaGS3KmcQjq6gfn5PXh_mW5ytbPj0_LxTqTBTQx66taaJRdp4XuRQ2guGAl6zXnXcO7voCqZELyGlVXIgPUChl2Auo671HIYk5ujr7p9Y9Jhdhu3eRtOtnmvE4pQQNNUsFRJb0LwSvdjt7s0H-1DNpDou3fRNNKdlwJuFG_pv_qvwG3B3iZ</recordid><startdate>202102</startdate><enddate>202102</enddate><creator>Tang, Difan</creator><creator>Chen, Lei</creator><creator>Tian, Zhao F</creator><creator>Hu, Eric</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-7143-0441</orcidid></search><sort><creationdate>202102</creationdate><title>A neural network approach for improving airfoil active flutter suppression under control-input constraints</title><author>Tang, Difan ; Chen, Lei ; Tian, Zhao F ; Hu, Eric</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c309t-d786facbbf6fd6800e46151df44b94bd307516c48aeb5a10afea1ab60882da6c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Active control</topic><topic>Approximation</topic><topic>Control stability</topic><topic>Controllers</topic><topic>Cost function</topic><topic>Extended Kalman filter</topic><topic>Flutter</topic><topic>Mathematical analysis</topic><topic>Network control</topic><topic>Neural networks</topic><topic>Nonlinear control</topic><topic>Nonlinear systems</topic><topic>Optimal control</topic><topic>Optimization</topic><topic>Parameters</topic><topic>Performance indices</topic><topic>Stability analysis</topic><topic>Vibration</topic><topic>Wind tunnel testing</topic><topic>Wind tunnels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tang, Difan</creatorcontrib><creatorcontrib>Chen, Lei</creatorcontrib><creatorcontrib>Tian, Zhao F</creatorcontrib><creatorcontrib>Hu, Eric</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of vibration and control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tang, Difan</au><au>Chen, Lei</au><au>Tian, Zhao F</au><au>Hu, Eric</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A neural network approach for improving airfoil active flutter suppression under control-input constraints</atitle><jtitle>Journal of vibration and control</jtitle><date>2021-02</date><risdate>2021</risdate><volume>27</volume><issue>3-4</issue><spage>451</spage><epage>467</epage><pages>451-467</pages><issn>1077-5463</issn><eissn>1741-2986</eissn><abstract>This study deals with improving airfoil active flutter suppression under control-input constraints from the optimal control perspective by proposing a novel optimal neural-network control. The proposed approach uses a modified value function approximation dynamically tuned by an extended Kalman filter to solve the Hamilton–Jacobi–Bellman equality online for continuously improved optimal control to address optimality in parameter-varying nonlinear systems. Control-input constraints are integrated into the controller synthesis by introducing a generalized nonquadratic cost function for control inputs. The feasibility of using a performance index involving the nonquadratic control-input cost with the modified value function approximation is examined through the Lyapunov stability analysis. Wind tunnel experiments were conducted for controller validation, where an optimal controller synthesized offline via linear parameter-varying technique was used as a benchmark and compared. It is shown, both theoretically and experimentally, that the proposed method can effectively improve airfoil active flutter suppression under control-input constraints.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/1077546320929153</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-7143-0441</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1077-5463 |
ispartof | Journal of vibration and control, 2021-02, Vol.27 (3-4), p.451-467 |
issn | 1077-5463 1741-2986 |
language | eng |
recordid | cdi_proquest_journals_2487750909 |
source | SAGE Complete A-Z List |
subjects | Active control Approximation Control stability Controllers Cost function Extended Kalman filter Flutter Mathematical analysis Network control Neural networks Nonlinear control Nonlinear systems Optimal control Optimization Parameters Performance indices Stability analysis Vibration Wind tunnel testing Wind tunnels |
title | A neural network approach for improving airfoil active flutter suppression under control-input constraints |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T01%3A47%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20neural%20network%20approach%20for%20improving%20airfoil%20active%20flutter%20suppression%20under%20control-input%20constraints&rft.jtitle=Journal%20of%20vibration%20and%20control&rft.au=Tang,%20Difan&rft.date=2021-02&rft.volume=27&rft.issue=3-4&rft.spage=451&rft.epage=467&rft.pages=451-467&rft.issn=1077-5463&rft.eissn=1741-2986&rft_id=info:doi/10.1177/1077546320929153&rft_dat=%3Cproquest_cross%3E2487750909%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2487750909&rft_id=info:pmid/&rft_sage_id=10.1177_1077546320929153&rfr_iscdi=true |