A neural network approach for improving airfoil active flutter suppression under control-input constraints

This study deals with improving airfoil active flutter suppression under control-input constraints from the optimal control perspective by proposing a novel optimal neural-network control. The proposed approach uses a modified value function approximation dynamically tuned by an extended Kalman filt...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of vibration and control 2021-02, Vol.27 (3-4), p.451-467
Hauptverfasser: Tang, Difan, Chen, Lei, Tian, Zhao F, Hu, Eric
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 467
container_issue 3-4
container_start_page 451
container_title Journal of vibration and control
container_volume 27
creator Tang, Difan
Chen, Lei
Tian, Zhao F
Hu, Eric
description This study deals with improving airfoil active flutter suppression under control-input constraints from the optimal control perspective by proposing a novel optimal neural-network control. The proposed approach uses a modified value function approximation dynamically tuned by an extended Kalman filter to solve the Hamilton–Jacobi–Bellman equality online for continuously improved optimal control to address optimality in parameter-varying nonlinear systems. Control-input constraints are integrated into the controller synthesis by introducing a generalized nonquadratic cost function for control inputs. The feasibility of using a performance index involving the nonquadratic control-input cost with the modified value function approximation is examined through the Lyapunov stability analysis. Wind tunnel experiments were conducted for controller validation, where an optimal controller synthesized offline via linear parameter-varying technique was used as a benchmark and compared. It is shown, both theoretically and experimentally, that the proposed method can effectively improve airfoil active flutter suppression under control-input constraints.
doi_str_mv 10.1177/1077546320929153
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2487750909</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_1077546320929153</sage_id><sourcerecordid>2487750909</sourcerecordid><originalsourceid>FETCH-LOGICAL-c309t-d786facbbf6fd6800e46151df44b94bd307516c48aeb5a10afea1ab60882da6c3</originalsourceid><addsrcrecordid>eNp1UMFKxDAQDaLgunr3GPBcnbRp2h6XRV1hwYueyzRN1qzdpCbpin9vlhUEwdObmffmzfAIuWZwy1hV3TGoqpKLIocmb1hZnJAZqzjL8qYWp6lOdHbgz8lFCFsA4JzBjGwX1KrJ45Agfjr_TnEcvUP5RrXz1OxSszd2Q9F47cxAUUazV1QPU4zK0zAluQrBOEsn26eJdDZ6N2TGjlM8dCF6NDaGS3KmcQjq6gfn5PXh_mW5ytbPj0_LxTqTBTQx66taaJRdp4XuRQ2guGAl6zXnXcO7voCqZELyGlVXIgPUChl2Auo671HIYk5ujr7p9Y9Jhdhu3eRtOtnmvE4pQQNNUsFRJb0LwSvdjt7s0H-1DNpDou3fRNNKdlwJuFG_pv_qvwG3B3iZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2487750909</pqid></control><display><type>article</type><title>A neural network approach for improving airfoil active flutter suppression under control-input constraints</title><source>SAGE Complete A-Z List</source><creator>Tang, Difan ; Chen, Lei ; Tian, Zhao F ; Hu, Eric</creator><creatorcontrib>Tang, Difan ; Chen, Lei ; Tian, Zhao F ; Hu, Eric</creatorcontrib><description>This study deals with improving airfoil active flutter suppression under control-input constraints from the optimal control perspective by proposing a novel optimal neural-network control. The proposed approach uses a modified value function approximation dynamically tuned by an extended Kalman filter to solve the Hamilton–Jacobi–Bellman equality online for continuously improved optimal control to address optimality in parameter-varying nonlinear systems. Control-input constraints are integrated into the controller synthesis by introducing a generalized nonquadratic cost function for control inputs. The feasibility of using a performance index involving the nonquadratic control-input cost with the modified value function approximation is examined through the Lyapunov stability analysis. Wind tunnel experiments were conducted for controller validation, where an optimal controller synthesized offline via linear parameter-varying technique was used as a benchmark and compared. It is shown, both theoretically and experimentally, that the proposed method can effectively improve airfoil active flutter suppression under control-input constraints.</description><identifier>ISSN: 1077-5463</identifier><identifier>EISSN: 1741-2986</identifier><identifier>DOI: 10.1177/1077546320929153</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Active control ; Approximation ; Control stability ; Controllers ; Cost function ; Extended Kalman filter ; Flutter ; Mathematical analysis ; Network control ; Neural networks ; Nonlinear control ; Nonlinear systems ; Optimal control ; Optimization ; Parameters ; Performance indices ; Stability analysis ; Vibration ; Wind tunnel testing ; Wind tunnels</subject><ispartof>Journal of vibration and control, 2021-02, Vol.27 (3-4), p.451-467</ispartof><rights>The Author(s) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c309t-d786facbbf6fd6800e46151df44b94bd307516c48aeb5a10afea1ab60882da6c3</citedby><cites>FETCH-LOGICAL-c309t-d786facbbf6fd6800e46151df44b94bd307516c48aeb5a10afea1ab60882da6c3</cites><orcidid>0000-0002-7143-0441</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/1077546320929153$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/1077546320929153$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,776,780,21798,27901,27902,43597,43598</link.rule.ids></links><search><creatorcontrib>Tang, Difan</creatorcontrib><creatorcontrib>Chen, Lei</creatorcontrib><creatorcontrib>Tian, Zhao F</creatorcontrib><creatorcontrib>Hu, Eric</creatorcontrib><title>A neural network approach for improving airfoil active flutter suppression under control-input constraints</title><title>Journal of vibration and control</title><description>This study deals with improving airfoil active flutter suppression under control-input constraints from the optimal control perspective by proposing a novel optimal neural-network control. The proposed approach uses a modified value function approximation dynamically tuned by an extended Kalman filter to solve the Hamilton–Jacobi–Bellman equality online for continuously improved optimal control to address optimality in parameter-varying nonlinear systems. Control-input constraints are integrated into the controller synthesis by introducing a generalized nonquadratic cost function for control inputs. The feasibility of using a performance index involving the nonquadratic control-input cost with the modified value function approximation is examined through the Lyapunov stability analysis. Wind tunnel experiments were conducted for controller validation, where an optimal controller synthesized offline via linear parameter-varying technique was used as a benchmark and compared. It is shown, both theoretically and experimentally, that the proposed method can effectively improve airfoil active flutter suppression under control-input constraints.</description><subject>Active control</subject><subject>Approximation</subject><subject>Control stability</subject><subject>Controllers</subject><subject>Cost function</subject><subject>Extended Kalman filter</subject><subject>Flutter</subject><subject>Mathematical analysis</subject><subject>Network control</subject><subject>Neural networks</subject><subject>Nonlinear control</subject><subject>Nonlinear systems</subject><subject>Optimal control</subject><subject>Optimization</subject><subject>Parameters</subject><subject>Performance indices</subject><subject>Stability analysis</subject><subject>Vibration</subject><subject>Wind tunnel testing</subject><subject>Wind tunnels</subject><issn>1077-5463</issn><issn>1741-2986</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1UMFKxDAQDaLgunr3GPBcnbRp2h6XRV1hwYueyzRN1qzdpCbpin9vlhUEwdObmffmzfAIuWZwy1hV3TGoqpKLIocmb1hZnJAZqzjL8qYWp6lOdHbgz8lFCFsA4JzBjGwX1KrJ45Agfjr_TnEcvUP5RrXz1OxSszd2Q9F47cxAUUazV1QPU4zK0zAluQrBOEsn26eJdDZ6N2TGjlM8dCF6NDaGS3KmcQjq6gfn5PXh_mW5ytbPj0_LxTqTBTQx66taaJRdp4XuRQ2guGAl6zXnXcO7voCqZELyGlVXIgPUChl2Auo671HIYk5ujr7p9Y9Jhdhu3eRtOtnmvE4pQQNNUsFRJb0LwSvdjt7s0H-1DNpDou3fRNNKdlwJuFG_pv_qvwG3B3iZ</recordid><startdate>202102</startdate><enddate>202102</enddate><creator>Tang, Difan</creator><creator>Chen, Lei</creator><creator>Tian, Zhao F</creator><creator>Hu, Eric</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-7143-0441</orcidid></search><sort><creationdate>202102</creationdate><title>A neural network approach for improving airfoil active flutter suppression under control-input constraints</title><author>Tang, Difan ; Chen, Lei ; Tian, Zhao F ; Hu, Eric</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c309t-d786facbbf6fd6800e46151df44b94bd307516c48aeb5a10afea1ab60882da6c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Active control</topic><topic>Approximation</topic><topic>Control stability</topic><topic>Controllers</topic><topic>Cost function</topic><topic>Extended Kalman filter</topic><topic>Flutter</topic><topic>Mathematical analysis</topic><topic>Network control</topic><topic>Neural networks</topic><topic>Nonlinear control</topic><topic>Nonlinear systems</topic><topic>Optimal control</topic><topic>Optimization</topic><topic>Parameters</topic><topic>Performance indices</topic><topic>Stability analysis</topic><topic>Vibration</topic><topic>Wind tunnel testing</topic><topic>Wind tunnels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tang, Difan</creatorcontrib><creatorcontrib>Chen, Lei</creatorcontrib><creatorcontrib>Tian, Zhao F</creatorcontrib><creatorcontrib>Hu, Eric</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of vibration and control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tang, Difan</au><au>Chen, Lei</au><au>Tian, Zhao F</au><au>Hu, Eric</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A neural network approach for improving airfoil active flutter suppression under control-input constraints</atitle><jtitle>Journal of vibration and control</jtitle><date>2021-02</date><risdate>2021</risdate><volume>27</volume><issue>3-4</issue><spage>451</spage><epage>467</epage><pages>451-467</pages><issn>1077-5463</issn><eissn>1741-2986</eissn><abstract>This study deals with improving airfoil active flutter suppression under control-input constraints from the optimal control perspective by proposing a novel optimal neural-network control. The proposed approach uses a modified value function approximation dynamically tuned by an extended Kalman filter to solve the Hamilton–Jacobi–Bellman equality online for continuously improved optimal control to address optimality in parameter-varying nonlinear systems. Control-input constraints are integrated into the controller synthesis by introducing a generalized nonquadratic cost function for control inputs. The feasibility of using a performance index involving the nonquadratic control-input cost with the modified value function approximation is examined through the Lyapunov stability analysis. Wind tunnel experiments were conducted for controller validation, where an optimal controller synthesized offline via linear parameter-varying technique was used as a benchmark and compared. It is shown, both theoretically and experimentally, that the proposed method can effectively improve airfoil active flutter suppression under control-input constraints.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/1077546320929153</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-7143-0441</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1077-5463
ispartof Journal of vibration and control, 2021-02, Vol.27 (3-4), p.451-467
issn 1077-5463
1741-2986
language eng
recordid cdi_proquest_journals_2487750909
source SAGE Complete A-Z List
subjects Active control
Approximation
Control stability
Controllers
Cost function
Extended Kalman filter
Flutter
Mathematical analysis
Network control
Neural networks
Nonlinear control
Nonlinear systems
Optimal control
Optimization
Parameters
Performance indices
Stability analysis
Vibration
Wind tunnel testing
Wind tunnels
title A neural network approach for improving airfoil active flutter suppression under control-input constraints
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T01%3A47%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20neural%20network%20approach%20for%20improving%20airfoil%20active%20flutter%20suppression%20under%20control-input%20constraints&rft.jtitle=Journal%20of%20vibration%20and%20control&rft.au=Tang,%20Difan&rft.date=2021-02&rft.volume=27&rft.issue=3-4&rft.spage=451&rft.epage=467&rft.pages=451-467&rft.issn=1077-5463&rft.eissn=1741-2986&rft_id=info:doi/10.1177/1077546320929153&rft_dat=%3Cproquest_cross%3E2487750909%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2487750909&rft_id=info:pmid/&rft_sage_id=10.1177_1077546320929153&rfr_iscdi=true