Evaluating active investing with generic trading reactions

We evaluate the performance of rules using past information to generate daily trading signals. Assuming generic trading reactions to buy and sell signals, we derive an analytic excess return that isolates commissions, interests, the impact of trading timing, and that of the benchmark's choice....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of finance and economics 2021-01, Vol.26 (1), p.1018-1036
1. Verfasser: Zoicas‐Ienciu, Adrian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1036
container_issue 1
container_start_page 1018
container_title International journal of finance and economics
container_volume 26
creator Zoicas‐Ienciu, Adrian
description We evaluate the performance of rules using past information to generate daily trading signals. Assuming generic trading reactions to buy and sell signals, we derive an analytic excess return that isolates commissions, interests, the impact of trading timing, and that of the benchmark's choice. The result is useful in dealing with data snooping through leverage and benchmark tweaking. We illustrate the empirical implications by examining trend‐following performance across Dow Jones Industrial Average (1927–2016) and an international sample of major equity indexes and blue‐chip stocks (1980–2016). The results show substantial, fading, non‐persistent and highly methodology‐sensitive excess returns.
doi_str_mv 10.1002/ijfe.1833
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2487745101</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2487745101</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3303-14c8effde59c1b6efa3fc6d571685ea8a39406f2fa8afc658106f44d6ac37e263</originalsourceid><addsrcrecordid>eNp1kE1PAjEQhhujiYge_AebePKwMN1uP9abIaAYEi96bmp3iiW4i-0C4d_TBa-eZuadZz7yEnJPYUQBirFfORxRxdgFGVCoqpxSri77XIq8YiCvyU2MKwAQXMKAPE13Zr01nW-WmbGd32Hmmx3Gk7D33Xe2xAaDt1kXTN2LAXuubeItuXJmHfHuLw7J52z6MXnNF-8v88nzIreMActpaRU6VyOvLP0S6AxzVtRcUqE4GmVYVYJwhUtpanBFU1WWtTCWSSwEG5KH895NaH-36TW9arehSSd1USopS06BJurxTNnQxhjQ6U3wPyYcNAXdW6N7a3RvTWLHZ3bv13j4H9Tzt9n0NHEE9EhmAQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2487745101</pqid></control><display><type>article</type><title>Evaluating active investing with generic trading reactions</title><source>EBSCOhost Business Source Complete</source><source>Access via Wiley Online Library</source><creator>Zoicas‐Ienciu, Adrian</creator><creatorcontrib>Zoicas‐Ienciu, Adrian</creatorcontrib><description>We evaluate the performance of rules using past information to generate daily trading signals. Assuming generic trading reactions to buy and sell signals, we derive an analytic excess return that isolates commissions, interests, the impact of trading timing, and that of the benchmark's choice. The result is useful in dealing with data snooping through leverage and benchmark tweaking. We illustrate the empirical implications by examining trend‐following performance across Dow Jones Industrial Average (1927–2016) and an international sample of major equity indexes and blue‐chip stocks (1980–2016). The results show substantial, fading, non‐persistent and highly methodology‐sensitive excess returns.</description><identifier>ISSN: 1076-9307</identifier><identifier>EISSN: 1099-1158</identifier><identifier>DOI: 10.1002/ijfe.1833</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>data snooping ; market efficiency ; Performance evaluation ; return predictability ; technical trading ; trading strategies</subject><ispartof>International journal of finance and economics, 2021-01, Vol.26 (1), p.1018-1036</ispartof><rights>2020 John Wiley &amp; Sons, Ltd.</rights><rights>2021 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3303-14c8effde59c1b6efa3fc6d571685ea8a39406f2fa8afc658106f44d6ac37e263</citedby><cites>FETCH-LOGICAL-c3303-14c8effde59c1b6efa3fc6d571685ea8a39406f2fa8afc658106f44d6ac37e263</cites><orcidid>0000-0001-9049-1373</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fijfe.1833$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fijfe.1833$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Zoicas‐Ienciu, Adrian</creatorcontrib><title>Evaluating active investing with generic trading reactions</title><title>International journal of finance and economics</title><description>We evaluate the performance of rules using past information to generate daily trading signals. Assuming generic trading reactions to buy and sell signals, we derive an analytic excess return that isolates commissions, interests, the impact of trading timing, and that of the benchmark's choice. The result is useful in dealing with data snooping through leverage and benchmark tweaking. We illustrate the empirical implications by examining trend‐following performance across Dow Jones Industrial Average (1927–2016) and an international sample of major equity indexes and blue‐chip stocks (1980–2016). The results show substantial, fading, non‐persistent and highly methodology‐sensitive excess returns.</description><subject>data snooping</subject><subject>market efficiency</subject><subject>Performance evaluation</subject><subject>return predictability</subject><subject>technical trading</subject><subject>trading strategies</subject><issn>1076-9307</issn><issn>1099-1158</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kE1PAjEQhhujiYge_AebePKwMN1uP9abIaAYEi96bmp3iiW4i-0C4d_TBa-eZuadZz7yEnJPYUQBirFfORxRxdgFGVCoqpxSri77XIq8YiCvyU2MKwAQXMKAPE13Zr01nW-WmbGd32Hmmx3Gk7D33Xe2xAaDt1kXTN2LAXuubeItuXJmHfHuLw7J52z6MXnNF-8v88nzIreMActpaRU6VyOvLP0S6AxzVtRcUqE4GmVYVYJwhUtpanBFU1WWtTCWSSwEG5KH895NaH-36TW9arehSSd1USopS06BJurxTNnQxhjQ6U3wPyYcNAXdW6N7a3RvTWLHZ3bv13j4H9Tzt9n0NHEE9EhmAQ</recordid><startdate>202101</startdate><enddate>202101</enddate><creator>Zoicas‐Ienciu, Adrian</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley Periodicals Inc</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-9049-1373</orcidid></search><sort><creationdate>202101</creationdate><title>Evaluating active investing with generic trading reactions</title><author>Zoicas‐Ienciu, Adrian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3303-14c8effde59c1b6efa3fc6d571685ea8a39406f2fa8afc658106f44d6ac37e263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>data snooping</topic><topic>market efficiency</topic><topic>Performance evaluation</topic><topic>return predictability</topic><topic>technical trading</topic><topic>trading strategies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zoicas‐Ienciu, Adrian</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of finance and economics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zoicas‐Ienciu, Adrian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluating active investing with generic trading reactions</atitle><jtitle>International journal of finance and economics</jtitle><date>2021-01</date><risdate>2021</risdate><volume>26</volume><issue>1</issue><spage>1018</spage><epage>1036</epage><pages>1018-1036</pages><issn>1076-9307</issn><eissn>1099-1158</eissn><abstract>We evaluate the performance of rules using past information to generate daily trading signals. Assuming generic trading reactions to buy and sell signals, we derive an analytic excess return that isolates commissions, interests, the impact of trading timing, and that of the benchmark's choice. The result is useful in dealing with data snooping through leverage and benchmark tweaking. We illustrate the empirical implications by examining trend‐following performance across Dow Jones Industrial Average (1927–2016) and an international sample of major equity indexes and blue‐chip stocks (1980–2016). The results show substantial, fading, non‐persistent and highly methodology‐sensitive excess returns.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><doi>10.1002/ijfe.1833</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0001-9049-1373</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1076-9307
ispartof International journal of finance and economics, 2021-01, Vol.26 (1), p.1018-1036
issn 1076-9307
1099-1158
language eng
recordid cdi_proquest_journals_2487745101
source EBSCOhost Business Source Complete; Access via Wiley Online Library
subjects data snooping
market efficiency
Performance evaluation
return predictability
technical trading
trading strategies
title Evaluating active investing with generic trading reactions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T00%3A28%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluating%20active%20investing%20with%20generic%20trading%20reactions&rft.jtitle=International%20journal%20of%20finance%20and%20economics&rft.au=Zoicas%E2%80%90Ienciu,%20Adrian&rft.date=2021-01&rft.volume=26&rft.issue=1&rft.spage=1018&rft.epage=1036&rft.pages=1018-1036&rft.issn=1076-9307&rft.eissn=1099-1158&rft_id=info:doi/10.1002/ijfe.1833&rft_dat=%3Cproquest_cross%3E2487745101%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2487745101&rft_id=info:pmid/&rfr_iscdi=true