Linking Glass‐Transition Behavior to Photophysical and Charge Transport Properties of High‐Mobility Conjugated Polymers

The measurement of the mechanical properties of conjugated polymers can reveal highly relevant information linking optoelectronic properties to underlying microstructures and the knowledge of the glass transition temperature (Tg) is paramount for informing the choice of processing conditions and for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2021-02, Vol.31 (7), p.n/a
Hauptverfasser: Xiao, Mingfei, Sadhanala, Aditya, Abdi‐Jalebi, Mojtaba, Thomas, Tudor H., Ren, Xinglong, Zhang, Tao, Chen, Hu, Carey, Remington L., Wang, Qijing, Senanayak, Satyaprasad P., Jellett, Cameron, Onwubiko, Ada, Moser, Maximilian, Liao, Hailiang, Yue, Wan, McCulloch, Iain, Nikolka, Mark, Sirringhaus, Henning
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 7
container_start_page
container_title Advanced functional materials
container_volume 31
creator Xiao, Mingfei
Sadhanala, Aditya
Abdi‐Jalebi, Mojtaba
Thomas, Tudor H.
Ren, Xinglong
Zhang, Tao
Chen, Hu
Carey, Remington L.
Wang, Qijing
Senanayak, Satyaprasad P.
Jellett, Cameron
Onwubiko, Ada
Moser, Maximilian
Liao, Hailiang
Yue, Wan
McCulloch, Iain
Nikolka, Mark
Sirringhaus, Henning
description The measurement of the mechanical properties of conjugated polymers can reveal highly relevant information linking optoelectronic properties to underlying microstructures and the knowledge of the glass transition temperature (Tg) is paramount for informing the choice of processing conditions and for interpreting the thermal stability of devices. In this work, we use dynamical mechanical analysis to determine the Tg of a range of state‐of‐the‐art conjugated polymers with different degrees of crystallinity that are widely studied for applications in organic field‐effect transistors. We compare our measured values for Tg to the theoretical value predicted by a recent work based on the concept of effective mobility ζ. The comparison shows that for conjugated polymers with a modest length of the monomer units, the Tg values agree well with theoretically predictions. However, for the near‐amorphous, indacenodithiophene–benzothiadiazole family of polymers with more extended backbone units, values for Tg appear to be significantly higher, predicted by theory. However, values for Tg are correlated with the sub‐bandgap optical absorption suggesting the possible role of the interchain short contacts within materials’ amorphous domains. In this work, dynamical mechanical analysis is used to determine Tg of a range of state‐of‐the‐art conjugated polymers with different degrees of crystallinity that are widely studied for applications in organic field‐effect transistors. The measured values for Tg are compared with the theoretical value predicted by a recent work based on the concept of effective mobility ζ.
doi_str_mv 10.1002/adfm.202007359
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2487743828</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2487743828</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4239-6b6fb2bf65f77b561de3e5dadb4b1c8c51043aba37eb9ee3581e0fce500ada183</originalsourceid><addsrcrecordid>eNqFkL1OwzAUhSMEEqWwMltiTvFPEidjKbRFakWHIrFFdnKTuKRxsF1QxMIj8Iw8CS1FZWS6Z_i-c6XjeZcEDwjG9FrkxXpAMcWYszA58nokIpHPMI2PD5k8nXpn1q4wJpyzoOe9z1TzrJoSTWph7dfH59KIxiqndINuoBKvShvkNFpU2um26qzKRI1Ek6NRJUwJ6IdvtXFoYXQLximwSBdoqspqWzfXUtXKdWikm9WmFA5ytNB1twZjz72TQtQWLn5v33sc3y1HU3_2MLkfDWd-FlCW-JGMCkllEYUF5zKMSA4MwlzkMpAki7OQ4IAJKRgHmQCwMCaAiwxCjEUuSMz63tW-tzX6ZQPWpSu9Mc32ZUqDmPOAxXRHDfZUZrS1Boq0NWotTJcSnO4GTncDp4eBt0KyF95UDd0_dDq8Hc__3G-f8YSc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2487743828</pqid></control><display><type>article</type><title>Linking Glass‐Transition Behavior to Photophysical and Charge Transport Properties of High‐Mobility Conjugated Polymers</title><source>Wiley Journals</source><creator>Xiao, Mingfei ; Sadhanala, Aditya ; Abdi‐Jalebi, Mojtaba ; Thomas, Tudor H. ; Ren, Xinglong ; Zhang, Tao ; Chen, Hu ; Carey, Remington L. ; Wang, Qijing ; Senanayak, Satyaprasad P. ; Jellett, Cameron ; Onwubiko, Ada ; Moser, Maximilian ; Liao, Hailiang ; Yue, Wan ; McCulloch, Iain ; Nikolka, Mark ; Sirringhaus, Henning</creator><creatorcontrib>Xiao, Mingfei ; Sadhanala, Aditya ; Abdi‐Jalebi, Mojtaba ; Thomas, Tudor H. ; Ren, Xinglong ; Zhang, Tao ; Chen, Hu ; Carey, Remington L. ; Wang, Qijing ; Senanayak, Satyaprasad P. ; Jellett, Cameron ; Onwubiko, Ada ; Moser, Maximilian ; Liao, Hailiang ; Yue, Wan ; McCulloch, Iain ; Nikolka, Mark ; Sirringhaus, Henning</creatorcontrib><description>The measurement of the mechanical properties of conjugated polymers can reveal highly relevant information linking optoelectronic properties to underlying microstructures and the knowledge of the glass transition temperature (Tg) is paramount for informing the choice of processing conditions and for interpreting the thermal stability of devices. In this work, we use dynamical mechanical analysis to determine the Tg of a range of state‐of‐the‐art conjugated polymers with different degrees of crystallinity that are widely studied for applications in organic field‐effect transistors. We compare our measured values for Tg to the theoretical value predicted by a recent work based on the concept of effective mobility ζ. The comparison shows that for conjugated polymers with a modest length of the monomer units, the Tg values agree well with theoretically predictions. However, for the near‐amorphous, indacenodithiophene–benzothiadiazole family of polymers with more extended backbone units, values for Tg appear to be significantly higher, predicted by theory. However, values for Tg are correlated with the sub‐bandgap optical absorption suggesting the possible role of the interchain short contacts within materials’ amorphous domains. In this work, dynamical mechanical analysis is used to determine Tg of a range of state‐of‐the‐art conjugated polymers with different degrees of crystallinity that are widely studied for applications in organic field‐effect transistors. The measured values for Tg are compared with the theoretical value predicted by a recent work based on the concept of effective mobility ζ.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202007359</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Amorphous materials ; Charge transport ; conjugated polymers ; donor–acceptor polymers ; dynamic mechanical analysis ; Dynamic stability ; glass transition ; Glass transition temperature ; Materials science ; Mechanical analysis ; Mechanical properties ; Optoelectronics ; Polymers ; Stability analysis ; Temperature ; Thermal stability ; Transistors ; Transport properties</subject><ispartof>Advanced functional materials, 2021-02, Vol.31 (7), p.n/a</ispartof><rights>2020 Wiley‐VCH GmbH</rights><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4239-6b6fb2bf65f77b561de3e5dadb4b1c8c51043aba37eb9ee3581e0fce500ada183</citedby><cites>FETCH-LOGICAL-c4239-6b6fb2bf65f77b561de3e5dadb4b1c8c51043aba37eb9ee3581e0fce500ada183</cites><orcidid>0000-0001-9827-6061</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202007359$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202007359$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Xiao, Mingfei</creatorcontrib><creatorcontrib>Sadhanala, Aditya</creatorcontrib><creatorcontrib>Abdi‐Jalebi, Mojtaba</creatorcontrib><creatorcontrib>Thomas, Tudor H.</creatorcontrib><creatorcontrib>Ren, Xinglong</creatorcontrib><creatorcontrib>Zhang, Tao</creatorcontrib><creatorcontrib>Chen, Hu</creatorcontrib><creatorcontrib>Carey, Remington L.</creatorcontrib><creatorcontrib>Wang, Qijing</creatorcontrib><creatorcontrib>Senanayak, Satyaprasad P.</creatorcontrib><creatorcontrib>Jellett, Cameron</creatorcontrib><creatorcontrib>Onwubiko, Ada</creatorcontrib><creatorcontrib>Moser, Maximilian</creatorcontrib><creatorcontrib>Liao, Hailiang</creatorcontrib><creatorcontrib>Yue, Wan</creatorcontrib><creatorcontrib>McCulloch, Iain</creatorcontrib><creatorcontrib>Nikolka, Mark</creatorcontrib><creatorcontrib>Sirringhaus, Henning</creatorcontrib><title>Linking Glass‐Transition Behavior to Photophysical and Charge Transport Properties of High‐Mobility Conjugated Polymers</title><title>Advanced functional materials</title><description>The measurement of the mechanical properties of conjugated polymers can reveal highly relevant information linking optoelectronic properties to underlying microstructures and the knowledge of the glass transition temperature (Tg) is paramount for informing the choice of processing conditions and for interpreting the thermal stability of devices. In this work, we use dynamical mechanical analysis to determine the Tg of a range of state‐of‐the‐art conjugated polymers with different degrees of crystallinity that are widely studied for applications in organic field‐effect transistors. We compare our measured values for Tg to the theoretical value predicted by a recent work based on the concept of effective mobility ζ. The comparison shows that for conjugated polymers with a modest length of the monomer units, the Tg values agree well with theoretically predictions. However, for the near‐amorphous, indacenodithiophene–benzothiadiazole family of polymers with more extended backbone units, values for Tg appear to be significantly higher, predicted by theory. However, values for Tg are correlated with the sub‐bandgap optical absorption suggesting the possible role of the interchain short contacts within materials’ amorphous domains. In this work, dynamical mechanical analysis is used to determine Tg of a range of state‐of‐the‐art conjugated polymers with different degrees of crystallinity that are widely studied for applications in organic field‐effect transistors. The measured values for Tg are compared with the theoretical value predicted by a recent work based on the concept of effective mobility ζ.</description><subject>Amorphous materials</subject><subject>Charge transport</subject><subject>conjugated polymers</subject><subject>donor–acceptor polymers</subject><subject>dynamic mechanical analysis</subject><subject>Dynamic stability</subject><subject>glass transition</subject><subject>Glass transition temperature</subject><subject>Materials science</subject><subject>Mechanical analysis</subject><subject>Mechanical properties</subject><subject>Optoelectronics</subject><subject>Polymers</subject><subject>Stability analysis</subject><subject>Temperature</subject><subject>Thermal stability</subject><subject>Transistors</subject><subject>Transport properties</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkL1OwzAUhSMEEqWwMltiTvFPEidjKbRFakWHIrFFdnKTuKRxsF1QxMIj8Iw8CS1FZWS6Z_i-c6XjeZcEDwjG9FrkxXpAMcWYszA58nokIpHPMI2PD5k8nXpn1q4wJpyzoOe9z1TzrJoSTWph7dfH59KIxiqndINuoBKvShvkNFpU2um26qzKRI1Ek6NRJUwJ6IdvtXFoYXQLximwSBdoqspqWzfXUtXKdWikm9WmFA5ytNB1twZjz72TQtQWLn5v33sc3y1HU3_2MLkfDWd-FlCW-JGMCkllEYUF5zKMSA4MwlzkMpAki7OQ4IAJKRgHmQCwMCaAiwxCjEUuSMz63tW-tzX6ZQPWpSu9Mc32ZUqDmPOAxXRHDfZUZrS1Boq0NWotTJcSnO4GTncDp4eBt0KyF95UDd0_dDq8Hc__3G-f8YSc</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Xiao, Mingfei</creator><creator>Sadhanala, Aditya</creator><creator>Abdi‐Jalebi, Mojtaba</creator><creator>Thomas, Tudor H.</creator><creator>Ren, Xinglong</creator><creator>Zhang, Tao</creator><creator>Chen, Hu</creator><creator>Carey, Remington L.</creator><creator>Wang, Qijing</creator><creator>Senanayak, Satyaprasad P.</creator><creator>Jellett, Cameron</creator><creator>Onwubiko, Ada</creator><creator>Moser, Maximilian</creator><creator>Liao, Hailiang</creator><creator>Yue, Wan</creator><creator>McCulloch, Iain</creator><creator>Nikolka, Mark</creator><creator>Sirringhaus, Henning</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9827-6061</orcidid></search><sort><creationdate>20210201</creationdate><title>Linking Glass‐Transition Behavior to Photophysical and Charge Transport Properties of High‐Mobility Conjugated Polymers</title><author>Xiao, Mingfei ; Sadhanala, Aditya ; Abdi‐Jalebi, Mojtaba ; Thomas, Tudor H. ; Ren, Xinglong ; Zhang, Tao ; Chen, Hu ; Carey, Remington L. ; Wang, Qijing ; Senanayak, Satyaprasad P. ; Jellett, Cameron ; Onwubiko, Ada ; Moser, Maximilian ; Liao, Hailiang ; Yue, Wan ; McCulloch, Iain ; Nikolka, Mark ; Sirringhaus, Henning</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4239-6b6fb2bf65f77b561de3e5dadb4b1c8c51043aba37eb9ee3581e0fce500ada183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Amorphous materials</topic><topic>Charge transport</topic><topic>conjugated polymers</topic><topic>donor–acceptor polymers</topic><topic>dynamic mechanical analysis</topic><topic>Dynamic stability</topic><topic>glass transition</topic><topic>Glass transition temperature</topic><topic>Materials science</topic><topic>Mechanical analysis</topic><topic>Mechanical properties</topic><topic>Optoelectronics</topic><topic>Polymers</topic><topic>Stability analysis</topic><topic>Temperature</topic><topic>Thermal stability</topic><topic>Transistors</topic><topic>Transport properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiao, Mingfei</creatorcontrib><creatorcontrib>Sadhanala, Aditya</creatorcontrib><creatorcontrib>Abdi‐Jalebi, Mojtaba</creatorcontrib><creatorcontrib>Thomas, Tudor H.</creatorcontrib><creatorcontrib>Ren, Xinglong</creatorcontrib><creatorcontrib>Zhang, Tao</creatorcontrib><creatorcontrib>Chen, Hu</creatorcontrib><creatorcontrib>Carey, Remington L.</creatorcontrib><creatorcontrib>Wang, Qijing</creatorcontrib><creatorcontrib>Senanayak, Satyaprasad P.</creatorcontrib><creatorcontrib>Jellett, Cameron</creatorcontrib><creatorcontrib>Onwubiko, Ada</creatorcontrib><creatorcontrib>Moser, Maximilian</creatorcontrib><creatorcontrib>Liao, Hailiang</creatorcontrib><creatorcontrib>Yue, Wan</creatorcontrib><creatorcontrib>McCulloch, Iain</creatorcontrib><creatorcontrib>Nikolka, Mark</creatorcontrib><creatorcontrib>Sirringhaus, Henning</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiao, Mingfei</au><au>Sadhanala, Aditya</au><au>Abdi‐Jalebi, Mojtaba</au><au>Thomas, Tudor H.</au><au>Ren, Xinglong</au><au>Zhang, Tao</au><au>Chen, Hu</au><au>Carey, Remington L.</au><au>Wang, Qijing</au><au>Senanayak, Satyaprasad P.</au><au>Jellett, Cameron</au><au>Onwubiko, Ada</au><au>Moser, Maximilian</au><au>Liao, Hailiang</au><au>Yue, Wan</au><au>McCulloch, Iain</au><au>Nikolka, Mark</au><au>Sirringhaus, Henning</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Linking Glass‐Transition Behavior to Photophysical and Charge Transport Properties of High‐Mobility Conjugated Polymers</atitle><jtitle>Advanced functional materials</jtitle><date>2021-02-01</date><risdate>2021</risdate><volume>31</volume><issue>7</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>The measurement of the mechanical properties of conjugated polymers can reveal highly relevant information linking optoelectronic properties to underlying microstructures and the knowledge of the glass transition temperature (Tg) is paramount for informing the choice of processing conditions and for interpreting the thermal stability of devices. In this work, we use dynamical mechanical analysis to determine the Tg of a range of state‐of‐the‐art conjugated polymers with different degrees of crystallinity that are widely studied for applications in organic field‐effect transistors. We compare our measured values for Tg to the theoretical value predicted by a recent work based on the concept of effective mobility ζ. The comparison shows that for conjugated polymers with a modest length of the monomer units, the Tg values agree well with theoretically predictions. However, for the near‐amorphous, indacenodithiophene–benzothiadiazole family of polymers with more extended backbone units, values for Tg appear to be significantly higher, predicted by theory. However, values for Tg are correlated with the sub‐bandgap optical absorption suggesting the possible role of the interchain short contacts within materials’ amorphous domains. In this work, dynamical mechanical analysis is used to determine Tg of a range of state‐of‐the‐art conjugated polymers with different degrees of crystallinity that are widely studied for applications in organic field‐effect transistors. The measured values for Tg are compared with the theoretical value predicted by a recent work based on the concept of effective mobility ζ.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202007359</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-9827-6061</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2021-02, Vol.31 (7), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_2487743828
source Wiley Journals
subjects Amorphous materials
Charge transport
conjugated polymers
donor–acceptor polymers
dynamic mechanical analysis
Dynamic stability
glass transition
Glass transition temperature
Materials science
Mechanical analysis
Mechanical properties
Optoelectronics
Polymers
Stability analysis
Temperature
Thermal stability
Transistors
Transport properties
title Linking Glass‐Transition Behavior to Photophysical and Charge Transport Properties of High‐Mobility Conjugated Polymers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T02%3A38%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Linking%20Glass%E2%80%90Transition%20Behavior%20to%20Photophysical%20and%20Charge%20Transport%20Properties%20of%20High%E2%80%90Mobility%20Conjugated%20Polymers&rft.jtitle=Advanced%20functional%20materials&rft.au=Xiao,%20Mingfei&rft.date=2021-02-01&rft.volume=31&rft.issue=7&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202007359&rft_dat=%3Cproquest_cross%3E2487743828%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2487743828&rft_id=info:pmid/&rfr_iscdi=true