Linking Glass‐Transition Behavior to Photophysical and Charge Transport Properties of High‐Mobility Conjugated Polymers
The measurement of the mechanical properties of conjugated polymers can reveal highly relevant information linking optoelectronic properties to underlying microstructures and the knowledge of the glass transition temperature (Tg) is paramount for informing the choice of processing conditions and for...
Gespeichert in:
Veröffentlicht in: | Advanced functional materials 2021-02, Vol.31 (7), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 7 |
container_start_page | |
container_title | Advanced functional materials |
container_volume | 31 |
creator | Xiao, Mingfei Sadhanala, Aditya Abdi‐Jalebi, Mojtaba Thomas, Tudor H. Ren, Xinglong Zhang, Tao Chen, Hu Carey, Remington L. Wang, Qijing Senanayak, Satyaprasad P. Jellett, Cameron Onwubiko, Ada Moser, Maximilian Liao, Hailiang Yue, Wan McCulloch, Iain Nikolka, Mark Sirringhaus, Henning |
description | The measurement of the mechanical properties of conjugated polymers can reveal highly relevant information linking optoelectronic properties to underlying microstructures and the knowledge of the glass transition temperature (Tg) is paramount for informing the choice of processing conditions and for interpreting the thermal stability of devices. In this work, we use dynamical mechanical analysis to determine the Tg of a range of state‐of‐the‐art conjugated polymers with different degrees of crystallinity that are widely studied for applications in organic field‐effect transistors. We compare our measured values for Tg to the theoretical value predicted by a recent work based on the concept of effective mobility ζ. The comparison shows that for conjugated polymers with a modest length of the monomer units, the Tg values agree well with theoretically predictions. However, for the near‐amorphous, indacenodithiophene–benzothiadiazole family of polymers with more extended backbone units, values for Tg appear to be significantly higher, predicted by theory. However, values for Tg are correlated with the sub‐bandgap optical absorption suggesting the possible role of the interchain short contacts within materials’ amorphous domains.
In this work, dynamical mechanical analysis is used to determine Tg of a range of state‐of‐the‐art conjugated polymers with different degrees of crystallinity that are widely studied for applications in organic field‐effect transistors. The measured values for Tg are compared with the theoretical value predicted by a recent work based on the concept of effective mobility ζ. |
doi_str_mv | 10.1002/adfm.202007359 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2487743828</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2487743828</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4239-6b6fb2bf65f77b561de3e5dadb4b1c8c51043aba37eb9ee3581e0fce500ada183</originalsourceid><addsrcrecordid>eNqFkL1OwzAUhSMEEqWwMltiTvFPEidjKbRFakWHIrFFdnKTuKRxsF1QxMIj8Iw8CS1FZWS6Z_i-c6XjeZcEDwjG9FrkxXpAMcWYszA58nokIpHPMI2PD5k8nXpn1q4wJpyzoOe9z1TzrJoSTWph7dfH59KIxiqndINuoBKvShvkNFpU2um26qzKRI1Ek6NRJUwJ6IdvtXFoYXQLximwSBdoqspqWzfXUtXKdWikm9WmFA5ytNB1twZjz72TQtQWLn5v33sc3y1HU3_2MLkfDWd-FlCW-JGMCkllEYUF5zKMSA4MwlzkMpAki7OQ4IAJKRgHmQCwMCaAiwxCjEUuSMz63tW-tzX6ZQPWpSu9Mc32ZUqDmPOAxXRHDfZUZrS1Boq0NWotTJcSnO4GTncDp4eBt0KyF95UDd0_dDq8Hc__3G-f8YSc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2487743828</pqid></control><display><type>article</type><title>Linking Glass‐Transition Behavior to Photophysical and Charge Transport Properties of High‐Mobility Conjugated Polymers</title><source>Wiley Journals</source><creator>Xiao, Mingfei ; Sadhanala, Aditya ; Abdi‐Jalebi, Mojtaba ; Thomas, Tudor H. ; Ren, Xinglong ; Zhang, Tao ; Chen, Hu ; Carey, Remington L. ; Wang, Qijing ; Senanayak, Satyaprasad P. ; Jellett, Cameron ; Onwubiko, Ada ; Moser, Maximilian ; Liao, Hailiang ; Yue, Wan ; McCulloch, Iain ; Nikolka, Mark ; Sirringhaus, Henning</creator><creatorcontrib>Xiao, Mingfei ; Sadhanala, Aditya ; Abdi‐Jalebi, Mojtaba ; Thomas, Tudor H. ; Ren, Xinglong ; Zhang, Tao ; Chen, Hu ; Carey, Remington L. ; Wang, Qijing ; Senanayak, Satyaprasad P. ; Jellett, Cameron ; Onwubiko, Ada ; Moser, Maximilian ; Liao, Hailiang ; Yue, Wan ; McCulloch, Iain ; Nikolka, Mark ; Sirringhaus, Henning</creatorcontrib><description>The measurement of the mechanical properties of conjugated polymers can reveal highly relevant information linking optoelectronic properties to underlying microstructures and the knowledge of the glass transition temperature (Tg) is paramount for informing the choice of processing conditions and for interpreting the thermal stability of devices. In this work, we use dynamical mechanical analysis to determine the Tg of a range of state‐of‐the‐art conjugated polymers with different degrees of crystallinity that are widely studied for applications in organic field‐effect transistors. We compare our measured values for Tg to the theoretical value predicted by a recent work based on the concept of effective mobility ζ. The comparison shows that for conjugated polymers with a modest length of the monomer units, the Tg values agree well with theoretically predictions. However, for the near‐amorphous, indacenodithiophene–benzothiadiazole family of polymers with more extended backbone units, values for Tg appear to be significantly higher, predicted by theory. However, values for Tg are correlated with the sub‐bandgap optical absorption suggesting the possible role of the interchain short contacts within materials’ amorphous domains.
In this work, dynamical mechanical analysis is used to determine Tg of a range of state‐of‐the‐art conjugated polymers with different degrees of crystallinity that are widely studied for applications in organic field‐effect transistors. The measured values for Tg are compared with the theoretical value predicted by a recent work based on the concept of effective mobility ζ.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202007359</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Amorphous materials ; Charge transport ; conjugated polymers ; donor–acceptor polymers ; dynamic mechanical analysis ; Dynamic stability ; glass transition ; Glass transition temperature ; Materials science ; Mechanical analysis ; Mechanical properties ; Optoelectronics ; Polymers ; Stability analysis ; Temperature ; Thermal stability ; Transistors ; Transport properties</subject><ispartof>Advanced functional materials, 2021-02, Vol.31 (7), p.n/a</ispartof><rights>2020 Wiley‐VCH GmbH</rights><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4239-6b6fb2bf65f77b561de3e5dadb4b1c8c51043aba37eb9ee3581e0fce500ada183</citedby><cites>FETCH-LOGICAL-c4239-6b6fb2bf65f77b561de3e5dadb4b1c8c51043aba37eb9ee3581e0fce500ada183</cites><orcidid>0000-0001-9827-6061</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202007359$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202007359$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Xiao, Mingfei</creatorcontrib><creatorcontrib>Sadhanala, Aditya</creatorcontrib><creatorcontrib>Abdi‐Jalebi, Mojtaba</creatorcontrib><creatorcontrib>Thomas, Tudor H.</creatorcontrib><creatorcontrib>Ren, Xinglong</creatorcontrib><creatorcontrib>Zhang, Tao</creatorcontrib><creatorcontrib>Chen, Hu</creatorcontrib><creatorcontrib>Carey, Remington L.</creatorcontrib><creatorcontrib>Wang, Qijing</creatorcontrib><creatorcontrib>Senanayak, Satyaprasad P.</creatorcontrib><creatorcontrib>Jellett, Cameron</creatorcontrib><creatorcontrib>Onwubiko, Ada</creatorcontrib><creatorcontrib>Moser, Maximilian</creatorcontrib><creatorcontrib>Liao, Hailiang</creatorcontrib><creatorcontrib>Yue, Wan</creatorcontrib><creatorcontrib>McCulloch, Iain</creatorcontrib><creatorcontrib>Nikolka, Mark</creatorcontrib><creatorcontrib>Sirringhaus, Henning</creatorcontrib><title>Linking Glass‐Transition Behavior to Photophysical and Charge Transport Properties of High‐Mobility Conjugated Polymers</title><title>Advanced functional materials</title><description>The measurement of the mechanical properties of conjugated polymers can reveal highly relevant information linking optoelectronic properties to underlying microstructures and the knowledge of the glass transition temperature (Tg) is paramount for informing the choice of processing conditions and for interpreting the thermal stability of devices. In this work, we use dynamical mechanical analysis to determine the Tg of a range of state‐of‐the‐art conjugated polymers with different degrees of crystallinity that are widely studied for applications in organic field‐effect transistors. We compare our measured values for Tg to the theoretical value predicted by a recent work based on the concept of effective mobility ζ. The comparison shows that for conjugated polymers with a modest length of the monomer units, the Tg values agree well with theoretically predictions. However, for the near‐amorphous, indacenodithiophene–benzothiadiazole family of polymers with more extended backbone units, values for Tg appear to be significantly higher, predicted by theory. However, values for Tg are correlated with the sub‐bandgap optical absorption suggesting the possible role of the interchain short contacts within materials’ amorphous domains.
In this work, dynamical mechanical analysis is used to determine Tg of a range of state‐of‐the‐art conjugated polymers with different degrees of crystallinity that are widely studied for applications in organic field‐effect transistors. The measured values for Tg are compared with the theoretical value predicted by a recent work based on the concept of effective mobility ζ.</description><subject>Amorphous materials</subject><subject>Charge transport</subject><subject>conjugated polymers</subject><subject>donor–acceptor polymers</subject><subject>dynamic mechanical analysis</subject><subject>Dynamic stability</subject><subject>glass transition</subject><subject>Glass transition temperature</subject><subject>Materials science</subject><subject>Mechanical analysis</subject><subject>Mechanical properties</subject><subject>Optoelectronics</subject><subject>Polymers</subject><subject>Stability analysis</subject><subject>Temperature</subject><subject>Thermal stability</subject><subject>Transistors</subject><subject>Transport properties</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkL1OwzAUhSMEEqWwMltiTvFPEidjKbRFakWHIrFFdnKTuKRxsF1QxMIj8Iw8CS1FZWS6Z_i-c6XjeZcEDwjG9FrkxXpAMcWYszA58nokIpHPMI2PD5k8nXpn1q4wJpyzoOe9z1TzrJoSTWph7dfH59KIxiqndINuoBKvShvkNFpU2um26qzKRI1Ek6NRJUwJ6IdvtXFoYXQLximwSBdoqspqWzfXUtXKdWikm9WmFA5ytNB1twZjz72TQtQWLn5v33sc3y1HU3_2MLkfDWd-FlCW-JGMCkllEYUF5zKMSA4MwlzkMpAki7OQ4IAJKRgHmQCwMCaAiwxCjEUuSMz63tW-tzX6ZQPWpSu9Mc32ZUqDmPOAxXRHDfZUZrS1Boq0NWotTJcSnO4GTncDp4eBt0KyF95UDd0_dDq8Hc__3G-f8YSc</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Xiao, Mingfei</creator><creator>Sadhanala, Aditya</creator><creator>Abdi‐Jalebi, Mojtaba</creator><creator>Thomas, Tudor H.</creator><creator>Ren, Xinglong</creator><creator>Zhang, Tao</creator><creator>Chen, Hu</creator><creator>Carey, Remington L.</creator><creator>Wang, Qijing</creator><creator>Senanayak, Satyaprasad P.</creator><creator>Jellett, Cameron</creator><creator>Onwubiko, Ada</creator><creator>Moser, Maximilian</creator><creator>Liao, Hailiang</creator><creator>Yue, Wan</creator><creator>McCulloch, Iain</creator><creator>Nikolka, Mark</creator><creator>Sirringhaus, Henning</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9827-6061</orcidid></search><sort><creationdate>20210201</creationdate><title>Linking Glass‐Transition Behavior to Photophysical and Charge Transport Properties of High‐Mobility Conjugated Polymers</title><author>Xiao, Mingfei ; Sadhanala, Aditya ; Abdi‐Jalebi, Mojtaba ; Thomas, Tudor H. ; Ren, Xinglong ; Zhang, Tao ; Chen, Hu ; Carey, Remington L. ; Wang, Qijing ; Senanayak, Satyaprasad P. ; Jellett, Cameron ; Onwubiko, Ada ; Moser, Maximilian ; Liao, Hailiang ; Yue, Wan ; McCulloch, Iain ; Nikolka, Mark ; Sirringhaus, Henning</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4239-6b6fb2bf65f77b561de3e5dadb4b1c8c51043aba37eb9ee3581e0fce500ada183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Amorphous materials</topic><topic>Charge transport</topic><topic>conjugated polymers</topic><topic>donor–acceptor polymers</topic><topic>dynamic mechanical analysis</topic><topic>Dynamic stability</topic><topic>glass transition</topic><topic>Glass transition temperature</topic><topic>Materials science</topic><topic>Mechanical analysis</topic><topic>Mechanical properties</topic><topic>Optoelectronics</topic><topic>Polymers</topic><topic>Stability analysis</topic><topic>Temperature</topic><topic>Thermal stability</topic><topic>Transistors</topic><topic>Transport properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiao, Mingfei</creatorcontrib><creatorcontrib>Sadhanala, Aditya</creatorcontrib><creatorcontrib>Abdi‐Jalebi, Mojtaba</creatorcontrib><creatorcontrib>Thomas, Tudor H.</creatorcontrib><creatorcontrib>Ren, Xinglong</creatorcontrib><creatorcontrib>Zhang, Tao</creatorcontrib><creatorcontrib>Chen, Hu</creatorcontrib><creatorcontrib>Carey, Remington L.</creatorcontrib><creatorcontrib>Wang, Qijing</creatorcontrib><creatorcontrib>Senanayak, Satyaprasad P.</creatorcontrib><creatorcontrib>Jellett, Cameron</creatorcontrib><creatorcontrib>Onwubiko, Ada</creatorcontrib><creatorcontrib>Moser, Maximilian</creatorcontrib><creatorcontrib>Liao, Hailiang</creatorcontrib><creatorcontrib>Yue, Wan</creatorcontrib><creatorcontrib>McCulloch, Iain</creatorcontrib><creatorcontrib>Nikolka, Mark</creatorcontrib><creatorcontrib>Sirringhaus, Henning</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiao, Mingfei</au><au>Sadhanala, Aditya</au><au>Abdi‐Jalebi, Mojtaba</au><au>Thomas, Tudor H.</au><au>Ren, Xinglong</au><au>Zhang, Tao</au><au>Chen, Hu</au><au>Carey, Remington L.</au><au>Wang, Qijing</au><au>Senanayak, Satyaprasad P.</au><au>Jellett, Cameron</au><au>Onwubiko, Ada</au><au>Moser, Maximilian</au><au>Liao, Hailiang</au><au>Yue, Wan</au><au>McCulloch, Iain</au><au>Nikolka, Mark</au><au>Sirringhaus, Henning</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Linking Glass‐Transition Behavior to Photophysical and Charge Transport Properties of High‐Mobility Conjugated Polymers</atitle><jtitle>Advanced functional materials</jtitle><date>2021-02-01</date><risdate>2021</risdate><volume>31</volume><issue>7</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>The measurement of the mechanical properties of conjugated polymers can reveal highly relevant information linking optoelectronic properties to underlying microstructures and the knowledge of the glass transition temperature (Tg) is paramount for informing the choice of processing conditions and for interpreting the thermal stability of devices. In this work, we use dynamical mechanical analysis to determine the Tg of a range of state‐of‐the‐art conjugated polymers with different degrees of crystallinity that are widely studied for applications in organic field‐effect transistors. We compare our measured values for Tg to the theoretical value predicted by a recent work based on the concept of effective mobility ζ. The comparison shows that for conjugated polymers with a modest length of the monomer units, the Tg values agree well with theoretically predictions. However, for the near‐amorphous, indacenodithiophene–benzothiadiazole family of polymers with more extended backbone units, values for Tg appear to be significantly higher, predicted by theory. However, values for Tg are correlated with the sub‐bandgap optical absorption suggesting the possible role of the interchain short contacts within materials’ amorphous domains.
In this work, dynamical mechanical analysis is used to determine Tg of a range of state‐of‐the‐art conjugated polymers with different degrees of crystallinity that are widely studied for applications in organic field‐effect transistors. The measured values for Tg are compared with the theoretical value predicted by a recent work based on the concept of effective mobility ζ.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202007359</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-9827-6061</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2021-02, Vol.31 (7), p.n/a |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_proquest_journals_2487743828 |
source | Wiley Journals |
subjects | Amorphous materials Charge transport conjugated polymers donor–acceptor polymers dynamic mechanical analysis Dynamic stability glass transition Glass transition temperature Materials science Mechanical analysis Mechanical properties Optoelectronics Polymers Stability analysis Temperature Thermal stability Transistors Transport properties |
title | Linking Glass‐Transition Behavior to Photophysical and Charge Transport Properties of High‐Mobility Conjugated Polymers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T02%3A38%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Linking%20Glass%E2%80%90Transition%20Behavior%20to%20Photophysical%20and%20Charge%20Transport%20Properties%20of%20High%E2%80%90Mobility%20Conjugated%20Polymers&rft.jtitle=Advanced%20functional%20materials&rft.au=Xiao,%20Mingfei&rft.date=2021-02-01&rft.volume=31&rft.issue=7&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202007359&rft_dat=%3Cproquest_cross%3E2487743828%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2487743828&rft_id=info:pmid/&rfr_iscdi=true |