About optimal feedback control problem for motion model of nonlinearly viscous fluid

The optimal feedback control problem for the initial–boundary value problem describing a motion of a nonlinearly viscous fluid is considered in the paper. The existence of an optimal solution that gives a minimum to a given quality functional is proved. To prove the existence of an optimal solution...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Ashyralyev, Allaberen, Zvyagin, Victor, Zvyagin, Andrey
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 2325
creator Ashyralyev, Allaberen
Zvyagin, Victor
Zvyagin, Andrey
description The optimal feedback control problem for the initial–boundary value problem describing a motion of a nonlinearly viscous fluid is considered in the paper. The existence of an optimal solution that gives a minimum to a given quality functional is proved. To prove the existence of an optimal solution the topological approximation method for investigation of hydrodynamic problems is used.
doi_str_mv 10.1063/5.0040387
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2487564747</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2487564747</sourcerecordid><originalsourceid>FETCH-LOGICAL-p253t-a2a929d24e595b97a183ff580d4d681e6821853d2e58692445a975aaba3b7bd23</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKsL_0HAnTA178eyFF9QcFPBXchMEpiaTsZMptB_75QW3Lk6m-_ce84B4B6jBUaCPvEFQgxRJS_ADHOOKymwuAQzhDSrCKNf1-BmGLYIES2lmoHNsk5jgakv7c5GGLx3tW2-YZO6klOEfU519DsYUoa7VNrUTeJ8hCnALnWx7bzN8QD37dCkcYAhjq27BVfBxsHfnXUOPl-eN6u3av3x-r5arquecFoqS6wm2hHmuea1lhYrGgJXyDEnFPZCEaw4dcRzJTRhjFstubW1pbWsHaFz8HC6O6X8Gf1QzDaNuZteGsKU5IJJJifq8UQNTVvssYLp89Q2H8w-ZcPNeTHTu_AfjJE5TvxnoL-Hzm2e</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2487564747</pqid></control><display><type>conference_proceeding</type><title>About optimal feedback control problem for motion model of nonlinearly viscous fluid</title><source>AIP Journals Complete</source><creator>Ashyralyev, Allaberen ; Zvyagin, Victor ; Zvyagin, Andrey</creator><contributor>Lukashov, Alexey ; Ashyralyyev, Charyyar ; Sadybekov, Makhmud ; Ashyralyev, Allaberen ; Erdogan, Abdullah S.</contributor><creatorcontrib>Ashyralyev, Allaberen ; Zvyagin, Victor ; Zvyagin, Andrey ; Lukashov, Alexey ; Ashyralyyev, Charyyar ; Sadybekov, Makhmud ; Ashyralyev, Allaberen ; Erdogan, Abdullah S.</creatorcontrib><description>The optimal feedback control problem for the initial–boundary value problem describing a motion of a nonlinearly viscous fluid is considered in the paper. The existence of an optimal solution that gives a minimum to a given quality functional is proved. To prove the existence of an optimal solution the topological approximation method for investigation of hydrodynamic problems is used.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0040387</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Approximation ; Boundary value problems ; Control systems ; Feedback control ; Viscous fluids</subject><ispartof>AIP conference proceedings, 2021, Vol.2325 (1)</ispartof><rights>Author(s)</rights><rights>2021 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0040387$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,794,4510,23929,23930,25139,27923,27924,76155</link.rule.ids></links><search><contributor>Lukashov, Alexey</contributor><contributor>Ashyralyyev, Charyyar</contributor><contributor>Sadybekov, Makhmud</contributor><contributor>Ashyralyev, Allaberen</contributor><contributor>Erdogan, Abdullah S.</contributor><creatorcontrib>Ashyralyev, Allaberen</creatorcontrib><creatorcontrib>Zvyagin, Victor</creatorcontrib><creatorcontrib>Zvyagin, Andrey</creatorcontrib><title>About optimal feedback control problem for motion model of nonlinearly viscous fluid</title><title>AIP conference proceedings</title><description>The optimal feedback control problem for the initial–boundary value problem describing a motion of a nonlinearly viscous fluid is considered in the paper. The existence of an optimal solution that gives a minimum to a given quality functional is proved. To prove the existence of an optimal solution the topological approximation method for investigation of hydrodynamic problems is used.</description><subject>Approximation</subject><subject>Boundary value problems</subject><subject>Control systems</subject><subject>Feedback control</subject><subject>Viscous fluids</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2021</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp9kEtLAzEUhYMoWKsL_0HAnTA178eyFF9QcFPBXchMEpiaTsZMptB_75QW3Lk6m-_ce84B4B6jBUaCPvEFQgxRJS_ADHOOKymwuAQzhDSrCKNf1-BmGLYIES2lmoHNsk5jgakv7c5GGLx3tW2-YZO6klOEfU519DsYUoa7VNrUTeJ8hCnALnWx7bzN8QD37dCkcYAhjq27BVfBxsHfnXUOPl-eN6u3av3x-r5arquecFoqS6wm2hHmuea1lhYrGgJXyDEnFPZCEaw4dcRzJTRhjFstubW1pbWsHaFz8HC6O6X8Gf1QzDaNuZteGsKU5IJJJifq8UQNTVvssYLp89Q2H8w-ZcPNeTHTu_AfjJE5TvxnoL-Hzm2e</recordid><startdate>20210209</startdate><enddate>20210209</enddate><creator>Ashyralyev, Allaberen</creator><creator>Zvyagin, Victor</creator><creator>Zvyagin, Andrey</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20210209</creationdate><title>About optimal feedback control problem for motion model of nonlinearly viscous fluid</title><author>Ashyralyev, Allaberen ; Zvyagin, Victor ; Zvyagin, Andrey</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p253t-a2a929d24e595b97a183ff580d4d681e6821853d2e58692445a975aaba3b7bd23</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Approximation</topic><topic>Boundary value problems</topic><topic>Control systems</topic><topic>Feedback control</topic><topic>Viscous fluids</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ashyralyev, Allaberen</creatorcontrib><creatorcontrib>Zvyagin, Victor</creatorcontrib><creatorcontrib>Zvyagin, Andrey</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ashyralyev, Allaberen</au><au>Zvyagin, Victor</au><au>Zvyagin, Andrey</au><au>Lukashov, Alexey</au><au>Ashyralyyev, Charyyar</au><au>Sadybekov, Makhmud</au><au>Ashyralyev, Allaberen</au><au>Erdogan, Abdullah S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>About optimal feedback control problem for motion model of nonlinearly viscous fluid</atitle><btitle>AIP conference proceedings</btitle><date>2021-02-09</date><risdate>2021</risdate><volume>2325</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>The optimal feedback control problem for the initial–boundary value problem describing a motion of a nonlinearly viscous fluid is considered in the paper. The existence of an optimal solution that gives a minimum to a given quality functional is proved. To prove the existence of an optimal solution the topological approximation method for investigation of hydrodynamic problems is used.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0040387</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2021, Vol.2325 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_proquest_journals_2487564747
source AIP Journals Complete
subjects Approximation
Boundary value problems
Control systems
Feedback control
Viscous fluids
title About optimal feedback control problem for motion model of nonlinearly viscous fluid
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T05%3A53%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=About%20optimal%20feedback%20control%20problem%20for%20motion%20model%20of%20nonlinearly%20viscous%20fluid&rft.btitle=AIP%20conference%20proceedings&rft.au=Ashyralyev,%20Allaberen&rft.date=2021-02-09&rft.volume=2325&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0040387&rft_dat=%3Cproquest_scita%3E2487564747%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2487564747&rft_id=info:pmid/&rfr_iscdi=true