Thermohydraulic analysis of hybrid nanofluid in a multilayered copper foam heat sink employing local thermal non-equilibrium condition: Optimization of layers thickness
•Study multi-layered copper foam heat sink with different thicknesses.•Thermohydraulic analysis of water-graphene nanoplatelet/platinum hybrid nanofluid.•Using thermal non-equilibrium model for nanofluid flow in porous medium.•Optimization of particle diameters and porosities of the porous medium.•1...
Gespeichert in:
Veröffentlicht in: | Applied thermal engineering 2020-11, Vol.181, p.115961, Article 115961 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 115961 |
container_title | Applied thermal engineering |
container_volume | 181 |
creator | Ghaneifar, Milad Arasteh, Hossein Mashayekhi, Ramin Rahbari, Alireza Babaei Mahani, Roohollah Talebizadehsardari, Pouyan |
description | •Study multi-layered copper foam heat sink with different thicknesses.•Thermohydraulic analysis of water-graphene nanoplatelet/platinum hybrid nanofluid.•Using thermal non-equilibrium model for nanofluid flow in porous medium.•Optimization of particle diameters and porosities of the porous medium.•145% and 191% higher heat transfer for constant porosity and particle diameter modes.
In the present study, fluid flow and heat transfer characteristics of a heat sink partially fitted with multilayered porous medium are analyzed. The multilayered copper foam contains three different layers placed at the bottom wall of the heat sink exposing to a uniform heat flux. The whole occupied volume of the porous region is 60% of the channel. The main objective of the current study is to reveal a layout for the porous medium with optimum thickness for each layer in two proposed models to maximize the heat transfer and minimize the pressure drop. In the constant particle diameter model, all three layers have an equal particle diameter of 1.5 cm with three porosities of 0.95, 0.85 and 0.75 from bottom to top. In the constant porosity model, all three layers have an equal porosity of 0.95 with three particle diameters of 0.5, 1 and 1.5 cm from bottom to top. To trade-off between the desirable (heat transfer) and undesirable (pressure drop) outcomes, the dimensionless number of performance evaluation criterion (PEC) is determined. Darcy–Brinkman–Forchheimer and local thermal non-equilibrium (LTNE) models are applied to solve the governing equations in the porous region. The CFD numerical simulations are conducted to analyze the effect of each layer thickness of the multilayered porous medium in the two proposed models on the thermohydraulic parameters such as friction coefficient, Nusselt number and PEC number. At the optimum layouts of the porous medium, water-graphene nanoplatelet/platinum hybrid nanofluid is applied to enhance the thermal performance of the heat sink. The obtained results reveal that the highest PEC number is achieved in the constant porosity model equal to 1.17 at the case in which the lower, middle and upper metal foam layer thicknesses are 0.6, 1 and 0.2 cm, respectively, resulting in 145% heat transfer enhancement. In constant particle diameter model, the highest PEC number equals to 1.26 at the case in which the lower, middle and upper metal foam layer thicknesses are 1, 0.6 and 0.2 cm, respectively, resulting in 191% heat transfer augmentation compar |
doi_str_mv | 10.1016/j.applthermaleng.2020.115961 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2487470071</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359431120334438</els_id><sourcerecordid>2487470071</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-559e8b4ec21ef4419f63c41f3e40ecf5a0b299bce9ba9a2971f86e61f96cd3103</originalsourceid><addsrcrecordid>eNqNkc1O3TAQhaOqlUpp38FS2ebWzr9RNxWCFgmJDV1bE2fMnYtjBztBCk_EY9bpZcOO1czI850Zz8myM8F3govmx2EH02TnPYYRLLr7XcGL9CRq2YgP2Yno2jKvG958THlZy7wqhficfYnxwLkourY6yV7uNtrv1yHAYkkzcGDXSJF5w_ZrH2hgDpw3dkkZOQZsXOxMFlYMODDtpwkDMx5GtkeYWST3wHCcrF_J3TPrNVj2uiJz3uX4uJClJLyMiXYDzeTdObudZhrpGbZqm_1_QEwk6QeHMX7NPhmwEb-9xtPs79Xl3cWf_Ob29_XFr5tcl3U353Utsesr1IVAU1VCmqbUlTAlVhy1qYH3hZS9RtmDhEK2wnQNNsLIRg-l4OVp9v2oOwX_uGCc1cEvIR0lqqJKJ2s5b0Xq-nns0sHHGNCoKdAIYVWCq80bdVBvvVGbN-roTcKvjjimnzwRBhU1odM4UEA9q8HT-4T-AUUQpmY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2487470071</pqid></control><display><type>article</type><title>Thermohydraulic analysis of hybrid nanofluid in a multilayered copper foam heat sink employing local thermal non-equilibrium condition: Optimization of layers thickness</title><source>Elsevier ScienceDirect Journals</source><creator>Ghaneifar, Milad ; Arasteh, Hossein ; Mashayekhi, Ramin ; Rahbari, Alireza ; Babaei Mahani, Roohollah ; Talebizadehsardari, Pouyan</creator><creatorcontrib>Ghaneifar, Milad ; Arasteh, Hossein ; Mashayekhi, Ramin ; Rahbari, Alireza ; Babaei Mahani, Roohollah ; Talebizadehsardari, Pouyan</creatorcontrib><description>•Study multi-layered copper foam heat sink with different thicknesses.•Thermohydraulic analysis of water-graphene nanoplatelet/platinum hybrid nanofluid.•Using thermal non-equilibrium model for nanofluid flow in porous medium.•Optimization of particle diameters and porosities of the porous medium.•145% and 191% higher heat transfer for constant porosity and particle diameter modes.
In the present study, fluid flow and heat transfer characteristics of a heat sink partially fitted with multilayered porous medium are analyzed. The multilayered copper foam contains three different layers placed at the bottom wall of the heat sink exposing to a uniform heat flux. The whole occupied volume of the porous region is 60% of the channel. The main objective of the current study is to reveal a layout for the porous medium with optimum thickness for each layer in two proposed models to maximize the heat transfer and minimize the pressure drop. In the constant particle diameter model, all three layers have an equal particle diameter of 1.5 cm with three porosities of 0.95, 0.85 and 0.75 from bottom to top. In the constant porosity model, all three layers have an equal porosity of 0.95 with three particle diameters of 0.5, 1 and 1.5 cm from bottom to top. To trade-off between the desirable (heat transfer) and undesirable (pressure drop) outcomes, the dimensionless number of performance evaluation criterion (PEC) is determined. Darcy–Brinkman–Forchheimer and local thermal non-equilibrium (LTNE) models are applied to solve the governing equations in the porous region. The CFD numerical simulations are conducted to analyze the effect of each layer thickness of the multilayered porous medium in the two proposed models on the thermohydraulic parameters such as friction coefficient, Nusselt number and PEC number. At the optimum layouts of the porous medium, water-graphene nanoplatelet/platinum hybrid nanofluid is applied to enhance the thermal performance of the heat sink. The obtained results reveal that the highest PEC number is achieved in the constant porosity model equal to 1.17 at the case in which the lower, middle and upper metal foam layer thicknesses are 0.6, 1 and 0.2 cm, respectively, resulting in 145% heat transfer enhancement. In constant particle diameter model, the highest PEC number equals to 1.26 at the case in which the lower, middle and upper metal foam layer thicknesses are 1, 0.6 and 0.2 cm, respectively, resulting in 191% heat transfer augmentation compared with the plain channel. Further increase in PEC number is observed by adding nanoparticles to the base fluid for nanofluid volume concentration of 0.1% in constant porosity and particle diameter models which are equal to 1.22 and 1.31, respectively.</description><identifier>ISSN: 1359-4311</identifier><identifier>EISSN: 1873-5606</identifier><identifier>DOI: 10.1016/j.applthermaleng.2020.115961</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Coefficient of friction ; Computational fluid dynamics ; Copper ; Diameters ; Dimensionless numbers ; Equilibrium conditions ; Fluid flow ; Graphene ; Heat flux ; Heat sinks ; Heat transfer ; Hybrid nanofluid, Heat sink ; Layouts ; Local thermal non-equilibrium ; Mathematical models ; Metal foams ; Multilayered porous media ; Nanofluids ; Nanoparticles ; Optimal thickness ; Optimization ; Particle size ; Performance evaluation ; Platinum ; Porosity ; Porous media ; Pressure drop ; Thickness</subject><ispartof>Applied thermal engineering, 2020-11, Vol.181, p.115961, Article 115961</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier BV Nov 25, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-559e8b4ec21ef4419f63c41f3e40ecf5a0b299bce9ba9a2971f86e61f96cd3103</citedby><cites>FETCH-LOGICAL-c358t-559e8b4ec21ef4419f63c41f3e40ecf5a0b299bce9ba9a2971f86e61f96cd3103</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1359431120334438$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Ghaneifar, Milad</creatorcontrib><creatorcontrib>Arasteh, Hossein</creatorcontrib><creatorcontrib>Mashayekhi, Ramin</creatorcontrib><creatorcontrib>Rahbari, Alireza</creatorcontrib><creatorcontrib>Babaei Mahani, Roohollah</creatorcontrib><creatorcontrib>Talebizadehsardari, Pouyan</creatorcontrib><title>Thermohydraulic analysis of hybrid nanofluid in a multilayered copper foam heat sink employing local thermal non-equilibrium condition: Optimization of layers thickness</title><title>Applied thermal engineering</title><description>•Study multi-layered copper foam heat sink with different thicknesses.•Thermohydraulic analysis of water-graphene nanoplatelet/platinum hybrid nanofluid.•Using thermal non-equilibrium model for nanofluid flow in porous medium.•Optimization of particle diameters and porosities of the porous medium.•145% and 191% higher heat transfer for constant porosity and particle diameter modes.
In the present study, fluid flow and heat transfer characteristics of a heat sink partially fitted with multilayered porous medium are analyzed. The multilayered copper foam contains three different layers placed at the bottom wall of the heat sink exposing to a uniform heat flux. The whole occupied volume of the porous region is 60% of the channel. The main objective of the current study is to reveal a layout for the porous medium with optimum thickness for each layer in two proposed models to maximize the heat transfer and minimize the pressure drop. In the constant particle diameter model, all three layers have an equal particle diameter of 1.5 cm with three porosities of 0.95, 0.85 and 0.75 from bottom to top. In the constant porosity model, all three layers have an equal porosity of 0.95 with three particle diameters of 0.5, 1 and 1.5 cm from bottom to top. To trade-off between the desirable (heat transfer) and undesirable (pressure drop) outcomes, the dimensionless number of performance evaluation criterion (PEC) is determined. Darcy–Brinkman–Forchheimer and local thermal non-equilibrium (LTNE) models are applied to solve the governing equations in the porous region. The CFD numerical simulations are conducted to analyze the effect of each layer thickness of the multilayered porous medium in the two proposed models on the thermohydraulic parameters such as friction coefficient, Nusselt number and PEC number. At the optimum layouts of the porous medium, water-graphene nanoplatelet/platinum hybrid nanofluid is applied to enhance the thermal performance of the heat sink. The obtained results reveal that the highest PEC number is achieved in the constant porosity model equal to 1.17 at the case in which the lower, middle and upper metal foam layer thicknesses are 0.6, 1 and 0.2 cm, respectively, resulting in 145% heat transfer enhancement. In constant particle diameter model, the highest PEC number equals to 1.26 at the case in which the lower, middle and upper metal foam layer thicknesses are 1, 0.6 and 0.2 cm, respectively, resulting in 191% heat transfer augmentation compared with the plain channel. Further increase in PEC number is observed by adding nanoparticles to the base fluid for nanofluid volume concentration of 0.1% in constant porosity and particle diameter models which are equal to 1.22 and 1.31, respectively.</description><subject>Coefficient of friction</subject><subject>Computational fluid dynamics</subject><subject>Copper</subject><subject>Diameters</subject><subject>Dimensionless numbers</subject><subject>Equilibrium conditions</subject><subject>Fluid flow</subject><subject>Graphene</subject><subject>Heat flux</subject><subject>Heat sinks</subject><subject>Heat transfer</subject><subject>Hybrid nanofluid, Heat sink</subject><subject>Layouts</subject><subject>Local thermal non-equilibrium</subject><subject>Mathematical models</subject><subject>Metal foams</subject><subject>Multilayered porous media</subject><subject>Nanofluids</subject><subject>Nanoparticles</subject><subject>Optimal thickness</subject><subject>Optimization</subject><subject>Particle size</subject><subject>Performance evaluation</subject><subject>Platinum</subject><subject>Porosity</subject><subject>Porous media</subject><subject>Pressure drop</subject><subject>Thickness</subject><issn>1359-4311</issn><issn>1873-5606</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqNkc1O3TAQhaOqlUpp38FS2ebWzr9RNxWCFgmJDV1bE2fMnYtjBztBCk_EY9bpZcOO1czI850Zz8myM8F3govmx2EH02TnPYYRLLr7XcGL9CRq2YgP2Yno2jKvG958THlZy7wqhficfYnxwLkourY6yV7uNtrv1yHAYkkzcGDXSJF5w_ZrH2hgDpw3dkkZOQZsXOxMFlYMODDtpwkDMx5GtkeYWST3wHCcrF_J3TPrNVj2uiJz3uX4uJClJLyMiXYDzeTdObudZhrpGbZqm_1_QEwk6QeHMX7NPhmwEb-9xtPs79Xl3cWf_Ob29_XFr5tcl3U353Utsesr1IVAU1VCmqbUlTAlVhy1qYH3hZS9RtmDhEK2wnQNNsLIRg-l4OVp9v2oOwX_uGCc1cEvIR0lqqJKJ2s5b0Xq-nns0sHHGNCoKdAIYVWCq80bdVBvvVGbN-roTcKvjjimnzwRBhU1odM4UEA9q8HT-4T-AUUQpmY</recordid><startdate>20201125</startdate><enddate>20201125</enddate><creator>Ghaneifar, Milad</creator><creator>Arasteh, Hossein</creator><creator>Mashayekhi, Ramin</creator><creator>Rahbari, Alireza</creator><creator>Babaei Mahani, Roohollah</creator><creator>Talebizadehsardari, Pouyan</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20201125</creationdate><title>Thermohydraulic analysis of hybrid nanofluid in a multilayered copper foam heat sink employing local thermal non-equilibrium condition: Optimization of layers thickness</title><author>Ghaneifar, Milad ; Arasteh, Hossein ; Mashayekhi, Ramin ; Rahbari, Alireza ; Babaei Mahani, Roohollah ; Talebizadehsardari, Pouyan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-559e8b4ec21ef4419f63c41f3e40ecf5a0b299bce9ba9a2971f86e61f96cd3103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Coefficient of friction</topic><topic>Computational fluid dynamics</topic><topic>Copper</topic><topic>Diameters</topic><topic>Dimensionless numbers</topic><topic>Equilibrium conditions</topic><topic>Fluid flow</topic><topic>Graphene</topic><topic>Heat flux</topic><topic>Heat sinks</topic><topic>Heat transfer</topic><topic>Hybrid nanofluid, Heat sink</topic><topic>Layouts</topic><topic>Local thermal non-equilibrium</topic><topic>Mathematical models</topic><topic>Metal foams</topic><topic>Multilayered porous media</topic><topic>Nanofluids</topic><topic>Nanoparticles</topic><topic>Optimal thickness</topic><topic>Optimization</topic><topic>Particle size</topic><topic>Performance evaluation</topic><topic>Platinum</topic><topic>Porosity</topic><topic>Porous media</topic><topic>Pressure drop</topic><topic>Thickness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ghaneifar, Milad</creatorcontrib><creatorcontrib>Arasteh, Hossein</creatorcontrib><creatorcontrib>Mashayekhi, Ramin</creatorcontrib><creatorcontrib>Rahbari, Alireza</creatorcontrib><creatorcontrib>Babaei Mahani, Roohollah</creatorcontrib><creatorcontrib>Talebizadehsardari, Pouyan</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Applied thermal engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ghaneifar, Milad</au><au>Arasteh, Hossein</au><au>Mashayekhi, Ramin</au><au>Rahbari, Alireza</au><au>Babaei Mahani, Roohollah</au><au>Talebizadehsardari, Pouyan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermohydraulic analysis of hybrid nanofluid in a multilayered copper foam heat sink employing local thermal non-equilibrium condition: Optimization of layers thickness</atitle><jtitle>Applied thermal engineering</jtitle><date>2020-11-25</date><risdate>2020</risdate><volume>181</volume><spage>115961</spage><pages>115961-</pages><artnum>115961</artnum><issn>1359-4311</issn><eissn>1873-5606</eissn><abstract>•Study multi-layered copper foam heat sink with different thicknesses.•Thermohydraulic analysis of water-graphene nanoplatelet/platinum hybrid nanofluid.•Using thermal non-equilibrium model for nanofluid flow in porous medium.•Optimization of particle diameters and porosities of the porous medium.•145% and 191% higher heat transfer for constant porosity and particle diameter modes.
In the present study, fluid flow and heat transfer characteristics of a heat sink partially fitted with multilayered porous medium are analyzed. The multilayered copper foam contains three different layers placed at the bottom wall of the heat sink exposing to a uniform heat flux. The whole occupied volume of the porous region is 60% of the channel. The main objective of the current study is to reveal a layout for the porous medium with optimum thickness for each layer in two proposed models to maximize the heat transfer and minimize the pressure drop. In the constant particle diameter model, all three layers have an equal particle diameter of 1.5 cm with three porosities of 0.95, 0.85 and 0.75 from bottom to top. In the constant porosity model, all three layers have an equal porosity of 0.95 with three particle diameters of 0.5, 1 and 1.5 cm from bottom to top. To trade-off between the desirable (heat transfer) and undesirable (pressure drop) outcomes, the dimensionless number of performance evaluation criterion (PEC) is determined. Darcy–Brinkman–Forchheimer and local thermal non-equilibrium (LTNE) models are applied to solve the governing equations in the porous region. The CFD numerical simulations are conducted to analyze the effect of each layer thickness of the multilayered porous medium in the two proposed models on the thermohydraulic parameters such as friction coefficient, Nusselt number and PEC number. At the optimum layouts of the porous medium, water-graphene nanoplatelet/platinum hybrid nanofluid is applied to enhance the thermal performance of the heat sink. The obtained results reveal that the highest PEC number is achieved in the constant porosity model equal to 1.17 at the case in which the lower, middle and upper metal foam layer thicknesses are 0.6, 1 and 0.2 cm, respectively, resulting in 145% heat transfer enhancement. In constant particle diameter model, the highest PEC number equals to 1.26 at the case in which the lower, middle and upper metal foam layer thicknesses are 1, 0.6 and 0.2 cm, respectively, resulting in 191% heat transfer augmentation compared with the plain channel. Further increase in PEC number is observed by adding nanoparticles to the base fluid for nanofluid volume concentration of 0.1% in constant porosity and particle diameter models which are equal to 1.22 and 1.31, respectively.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.applthermaleng.2020.115961</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1359-4311 |
ispartof | Applied thermal engineering, 2020-11, Vol.181, p.115961, Article 115961 |
issn | 1359-4311 1873-5606 |
language | eng |
recordid | cdi_proquest_journals_2487470071 |
source | Elsevier ScienceDirect Journals |
subjects | Coefficient of friction Computational fluid dynamics Copper Diameters Dimensionless numbers Equilibrium conditions Fluid flow Graphene Heat flux Heat sinks Heat transfer Hybrid nanofluid, Heat sink Layouts Local thermal non-equilibrium Mathematical models Metal foams Multilayered porous media Nanofluids Nanoparticles Optimal thickness Optimization Particle size Performance evaluation Platinum Porosity Porous media Pressure drop Thickness |
title | Thermohydraulic analysis of hybrid nanofluid in a multilayered copper foam heat sink employing local thermal non-equilibrium condition: Optimization of layers thickness |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T15%3A37%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermohydraulic%20analysis%20of%20hybrid%20nanofluid%20in%20a%20multilayered%20copper%20foam%20heat%20sink%20employing%20local%20thermal%20non-equilibrium%20condition:%20Optimization%20of%20layers%20thickness&rft.jtitle=Applied%20thermal%20engineering&rft.au=Ghaneifar,%20Milad&rft.date=2020-11-25&rft.volume=181&rft.spage=115961&rft.pages=115961-&rft.artnum=115961&rft.issn=1359-4311&rft.eissn=1873-5606&rft_id=info:doi/10.1016/j.applthermaleng.2020.115961&rft_dat=%3Cproquest_cross%3E2487470071%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2487470071&rft_id=info:pmid/&rft_els_id=S1359431120334438&rfr_iscdi=true |