Thermohydraulic analysis of hybrid nanofluid in a multilayered copper foam heat sink employing local thermal non-equilibrium condition: Optimization of layers thickness

•Study multi-layered copper foam heat sink with different thicknesses.•Thermohydraulic analysis of water-graphene nanoplatelet/platinum hybrid nanofluid.•Using thermal non-equilibrium model for nanofluid flow in porous medium.•Optimization of particle diameters and porosities of the porous medium.•1...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied thermal engineering 2020-11, Vol.181, p.115961, Article 115961
Hauptverfasser: Ghaneifar, Milad, Arasteh, Hossein, Mashayekhi, Ramin, Rahbari, Alireza, Babaei Mahani, Roohollah, Talebizadehsardari, Pouyan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 115961
container_title Applied thermal engineering
container_volume 181
creator Ghaneifar, Milad
Arasteh, Hossein
Mashayekhi, Ramin
Rahbari, Alireza
Babaei Mahani, Roohollah
Talebizadehsardari, Pouyan
description •Study multi-layered copper foam heat sink with different thicknesses.•Thermohydraulic analysis of water-graphene nanoplatelet/platinum hybrid nanofluid.•Using thermal non-equilibrium model for nanofluid flow in porous medium.•Optimization of particle diameters and porosities of the porous medium.•145% and 191% higher heat transfer for constant porosity and particle diameter modes. In the present study, fluid flow and heat transfer characteristics of a heat sink partially fitted with multilayered porous medium are analyzed. The multilayered copper foam contains three different layers placed at the bottom wall of the heat sink exposing to a uniform heat flux. The whole occupied volume of the porous region is 60% of the channel. The main objective of the current study is to reveal a layout for the porous medium with optimum thickness for each layer in two proposed models to maximize the heat transfer and minimize the pressure drop. In the constant particle diameter model, all three layers have an equal particle diameter of 1.5 cm with three porosities of 0.95, 0.85 and 0.75 from bottom to top. In the constant porosity model, all three layers have an equal porosity of 0.95 with three particle diameters of 0.5, 1 and 1.5 cm from bottom to top. To trade-off between the desirable (heat transfer) and undesirable (pressure drop) outcomes, the dimensionless number of performance evaluation criterion (PEC) is determined. Darcy–Brinkman–Forchheimer and local thermal non-equilibrium (LTNE) models are applied to solve the governing equations in the porous region. The CFD numerical simulations are conducted to analyze the effect of each layer thickness of the multilayered porous medium in the two proposed models on the thermohydraulic parameters such as friction coefficient, Nusselt number and PEC number. At the optimum layouts of the porous medium, water-graphene nanoplatelet/platinum hybrid nanofluid is applied to enhance the thermal performance of the heat sink. The obtained results reveal that the highest PEC number is achieved in the constant porosity model equal to 1.17 at the case in which the lower, middle and upper metal foam layer thicknesses are 0.6, 1 and 0.2 cm, respectively, resulting in 145% heat transfer enhancement. In constant particle diameter model, the highest PEC number equals to 1.26 at the case in which the lower, middle and upper metal foam layer thicknesses are 1, 0.6 and 0.2 cm, respectively, resulting in 191% heat transfer augmentation compar
doi_str_mv 10.1016/j.applthermaleng.2020.115961
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2487470071</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359431120334438</els_id><sourcerecordid>2487470071</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-559e8b4ec21ef4419f63c41f3e40ecf5a0b299bce9ba9a2971f86e61f96cd3103</originalsourceid><addsrcrecordid>eNqNkc1O3TAQhaOqlUpp38FS2ebWzr9RNxWCFgmJDV1bE2fMnYtjBztBCk_EY9bpZcOO1czI850Zz8myM8F3govmx2EH02TnPYYRLLr7XcGL9CRq2YgP2Yno2jKvG958THlZy7wqhficfYnxwLkourY6yV7uNtrv1yHAYkkzcGDXSJF5w_ZrH2hgDpw3dkkZOQZsXOxMFlYMODDtpwkDMx5GtkeYWST3wHCcrF_J3TPrNVj2uiJz3uX4uJClJLyMiXYDzeTdObudZhrpGbZqm_1_QEwk6QeHMX7NPhmwEb-9xtPs79Xl3cWf_Ob29_XFr5tcl3U353Utsesr1IVAU1VCmqbUlTAlVhy1qYH3hZS9RtmDhEK2wnQNNsLIRg-l4OVp9v2oOwX_uGCc1cEvIR0lqqJKJ2s5b0Xq-nns0sHHGNCoKdAIYVWCq80bdVBvvVGbN-roTcKvjjimnzwRBhU1odM4UEA9q8HT-4T-AUUQpmY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2487470071</pqid></control><display><type>article</type><title>Thermohydraulic analysis of hybrid nanofluid in a multilayered copper foam heat sink employing local thermal non-equilibrium condition: Optimization of layers thickness</title><source>Elsevier ScienceDirect Journals</source><creator>Ghaneifar, Milad ; Arasteh, Hossein ; Mashayekhi, Ramin ; Rahbari, Alireza ; Babaei Mahani, Roohollah ; Talebizadehsardari, Pouyan</creator><creatorcontrib>Ghaneifar, Milad ; Arasteh, Hossein ; Mashayekhi, Ramin ; Rahbari, Alireza ; Babaei Mahani, Roohollah ; Talebizadehsardari, Pouyan</creatorcontrib><description>•Study multi-layered copper foam heat sink with different thicknesses.•Thermohydraulic analysis of water-graphene nanoplatelet/platinum hybrid nanofluid.•Using thermal non-equilibrium model for nanofluid flow in porous medium.•Optimization of particle diameters and porosities of the porous medium.•145% and 191% higher heat transfer for constant porosity and particle diameter modes. In the present study, fluid flow and heat transfer characteristics of a heat sink partially fitted with multilayered porous medium are analyzed. The multilayered copper foam contains three different layers placed at the bottom wall of the heat sink exposing to a uniform heat flux. The whole occupied volume of the porous region is 60% of the channel. The main objective of the current study is to reveal a layout for the porous medium with optimum thickness for each layer in two proposed models to maximize the heat transfer and minimize the pressure drop. In the constant particle diameter model, all three layers have an equal particle diameter of 1.5 cm with three porosities of 0.95, 0.85 and 0.75 from bottom to top. In the constant porosity model, all three layers have an equal porosity of 0.95 with three particle diameters of 0.5, 1 and 1.5 cm from bottom to top. To trade-off between the desirable (heat transfer) and undesirable (pressure drop) outcomes, the dimensionless number of performance evaluation criterion (PEC) is determined. Darcy–Brinkman–Forchheimer and local thermal non-equilibrium (LTNE) models are applied to solve the governing equations in the porous region. The CFD numerical simulations are conducted to analyze the effect of each layer thickness of the multilayered porous medium in the two proposed models on the thermohydraulic parameters such as friction coefficient, Nusselt number and PEC number. At the optimum layouts of the porous medium, water-graphene nanoplatelet/platinum hybrid nanofluid is applied to enhance the thermal performance of the heat sink. The obtained results reveal that the highest PEC number is achieved in the constant porosity model equal to 1.17 at the case in which the lower, middle and upper metal foam layer thicknesses are 0.6, 1 and 0.2 cm, respectively, resulting in 145% heat transfer enhancement. In constant particle diameter model, the highest PEC number equals to 1.26 at the case in which the lower, middle and upper metal foam layer thicknesses are 1, 0.6 and 0.2 cm, respectively, resulting in 191% heat transfer augmentation compared with the plain channel. Further increase in PEC number is observed by adding nanoparticles to the base fluid for nanofluid volume concentration of 0.1% in constant porosity and particle diameter models which are equal to 1.22 and 1.31, respectively.</description><identifier>ISSN: 1359-4311</identifier><identifier>EISSN: 1873-5606</identifier><identifier>DOI: 10.1016/j.applthermaleng.2020.115961</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Coefficient of friction ; Computational fluid dynamics ; Copper ; Diameters ; Dimensionless numbers ; Equilibrium conditions ; Fluid flow ; Graphene ; Heat flux ; Heat sinks ; Heat transfer ; Hybrid nanofluid, Heat sink ; Layouts ; Local thermal non-equilibrium ; Mathematical models ; Metal foams ; Multilayered porous media ; Nanofluids ; Nanoparticles ; Optimal thickness ; Optimization ; Particle size ; Performance evaluation ; Platinum ; Porosity ; Porous media ; Pressure drop ; Thickness</subject><ispartof>Applied thermal engineering, 2020-11, Vol.181, p.115961, Article 115961</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier BV Nov 25, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-559e8b4ec21ef4419f63c41f3e40ecf5a0b299bce9ba9a2971f86e61f96cd3103</citedby><cites>FETCH-LOGICAL-c358t-559e8b4ec21ef4419f63c41f3e40ecf5a0b299bce9ba9a2971f86e61f96cd3103</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1359431120334438$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Ghaneifar, Milad</creatorcontrib><creatorcontrib>Arasteh, Hossein</creatorcontrib><creatorcontrib>Mashayekhi, Ramin</creatorcontrib><creatorcontrib>Rahbari, Alireza</creatorcontrib><creatorcontrib>Babaei Mahani, Roohollah</creatorcontrib><creatorcontrib>Talebizadehsardari, Pouyan</creatorcontrib><title>Thermohydraulic analysis of hybrid nanofluid in a multilayered copper foam heat sink employing local thermal non-equilibrium condition: Optimization of layers thickness</title><title>Applied thermal engineering</title><description>•Study multi-layered copper foam heat sink with different thicknesses.•Thermohydraulic analysis of water-graphene nanoplatelet/platinum hybrid nanofluid.•Using thermal non-equilibrium model for nanofluid flow in porous medium.•Optimization of particle diameters and porosities of the porous medium.•145% and 191% higher heat transfer for constant porosity and particle diameter modes. In the present study, fluid flow and heat transfer characteristics of a heat sink partially fitted with multilayered porous medium are analyzed. The multilayered copper foam contains three different layers placed at the bottom wall of the heat sink exposing to a uniform heat flux. The whole occupied volume of the porous region is 60% of the channel. The main objective of the current study is to reveal a layout for the porous medium with optimum thickness for each layer in two proposed models to maximize the heat transfer and minimize the pressure drop. In the constant particle diameter model, all three layers have an equal particle diameter of 1.5 cm with three porosities of 0.95, 0.85 and 0.75 from bottom to top. In the constant porosity model, all three layers have an equal porosity of 0.95 with three particle diameters of 0.5, 1 and 1.5 cm from bottom to top. To trade-off between the desirable (heat transfer) and undesirable (pressure drop) outcomes, the dimensionless number of performance evaluation criterion (PEC) is determined. Darcy–Brinkman–Forchheimer and local thermal non-equilibrium (LTNE) models are applied to solve the governing equations in the porous region. The CFD numerical simulations are conducted to analyze the effect of each layer thickness of the multilayered porous medium in the two proposed models on the thermohydraulic parameters such as friction coefficient, Nusselt number and PEC number. At the optimum layouts of the porous medium, water-graphene nanoplatelet/platinum hybrid nanofluid is applied to enhance the thermal performance of the heat sink. The obtained results reveal that the highest PEC number is achieved in the constant porosity model equal to 1.17 at the case in which the lower, middle and upper metal foam layer thicknesses are 0.6, 1 and 0.2 cm, respectively, resulting in 145% heat transfer enhancement. In constant particle diameter model, the highest PEC number equals to 1.26 at the case in which the lower, middle and upper metal foam layer thicknesses are 1, 0.6 and 0.2 cm, respectively, resulting in 191% heat transfer augmentation compared with the plain channel. Further increase in PEC number is observed by adding nanoparticles to the base fluid for nanofluid volume concentration of 0.1% in constant porosity and particle diameter models which are equal to 1.22 and 1.31, respectively.</description><subject>Coefficient of friction</subject><subject>Computational fluid dynamics</subject><subject>Copper</subject><subject>Diameters</subject><subject>Dimensionless numbers</subject><subject>Equilibrium conditions</subject><subject>Fluid flow</subject><subject>Graphene</subject><subject>Heat flux</subject><subject>Heat sinks</subject><subject>Heat transfer</subject><subject>Hybrid nanofluid, Heat sink</subject><subject>Layouts</subject><subject>Local thermal non-equilibrium</subject><subject>Mathematical models</subject><subject>Metal foams</subject><subject>Multilayered porous media</subject><subject>Nanofluids</subject><subject>Nanoparticles</subject><subject>Optimal thickness</subject><subject>Optimization</subject><subject>Particle size</subject><subject>Performance evaluation</subject><subject>Platinum</subject><subject>Porosity</subject><subject>Porous media</subject><subject>Pressure drop</subject><subject>Thickness</subject><issn>1359-4311</issn><issn>1873-5606</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqNkc1O3TAQhaOqlUpp38FS2ebWzr9RNxWCFgmJDV1bE2fMnYtjBztBCk_EY9bpZcOO1czI850Zz8myM8F3govmx2EH02TnPYYRLLr7XcGL9CRq2YgP2Yno2jKvG958THlZy7wqhficfYnxwLkourY6yV7uNtrv1yHAYkkzcGDXSJF5w_ZrH2hgDpw3dkkZOQZsXOxMFlYMODDtpwkDMx5GtkeYWST3wHCcrF_J3TPrNVj2uiJz3uX4uJClJLyMiXYDzeTdObudZhrpGbZqm_1_QEwk6QeHMX7NPhmwEb-9xtPs79Xl3cWf_Ob29_XFr5tcl3U353Utsesr1IVAU1VCmqbUlTAlVhy1qYH3hZS9RtmDhEK2wnQNNsLIRg-l4OVp9v2oOwX_uGCc1cEvIR0lqqJKJ2s5b0Xq-nns0sHHGNCoKdAIYVWCq80bdVBvvVGbN-roTcKvjjimnzwRBhU1odM4UEA9q8HT-4T-AUUQpmY</recordid><startdate>20201125</startdate><enddate>20201125</enddate><creator>Ghaneifar, Milad</creator><creator>Arasteh, Hossein</creator><creator>Mashayekhi, Ramin</creator><creator>Rahbari, Alireza</creator><creator>Babaei Mahani, Roohollah</creator><creator>Talebizadehsardari, Pouyan</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20201125</creationdate><title>Thermohydraulic analysis of hybrid nanofluid in a multilayered copper foam heat sink employing local thermal non-equilibrium condition: Optimization of layers thickness</title><author>Ghaneifar, Milad ; Arasteh, Hossein ; Mashayekhi, Ramin ; Rahbari, Alireza ; Babaei Mahani, Roohollah ; Talebizadehsardari, Pouyan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-559e8b4ec21ef4419f63c41f3e40ecf5a0b299bce9ba9a2971f86e61f96cd3103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Coefficient of friction</topic><topic>Computational fluid dynamics</topic><topic>Copper</topic><topic>Diameters</topic><topic>Dimensionless numbers</topic><topic>Equilibrium conditions</topic><topic>Fluid flow</topic><topic>Graphene</topic><topic>Heat flux</topic><topic>Heat sinks</topic><topic>Heat transfer</topic><topic>Hybrid nanofluid, Heat sink</topic><topic>Layouts</topic><topic>Local thermal non-equilibrium</topic><topic>Mathematical models</topic><topic>Metal foams</topic><topic>Multilayered porous media</topic><topic>Nanofluids</topic><topic>Nanoparticles</topic><topic>Optimal thickness</topic><topic>Optimization</topic><topic>Particle size</topic><topic>Performance evaluation</topic><topic>Platinum</topic><topic>Porosity</topic><topic>Porous media</topic><topic>Pressure drop</topic><topic>Thickness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ghaneifar, Milad</creatorcontrib><creatorcontrib>Arasteh, Hossein</creatorcontrib><creatorcontrib>Mashayekhi, Ramin</creatorcontrib><creatorcontrib>Rahbari, Alireza</creatorcontrib><creatorcontrib>Babaei Mahani, Roohollah</creatorcontrib><creatorcontrib>Talebizadehsardari, Pouyan</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Applied thermal engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ghaneifar, Milad</au><au>Arasteh, Hossein</au><au>Mashayekhi, Ramin</au><au>Rahbari, Alireza</au><au>Babaei Mahani, Roohollah</au><au>Talebizadehsardari, Pouyan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermohydraulic analysis of hybrid nanofluid in a multilayered copper foam heat sink employing local thermal non-equilibrium condition: Optimization of layers thickness</atitle><jtitle>Applied thermal engineering</jtitle><date>2020-11-25</date><risdate>2020</risdate><volume>181</volume><spage>115961</spage><pages>115961-</pages><artnum>115961</artnum><issn>1359-4311</issn><eissn>1873-5606</eissn><abstract>•Study multi-layered copper foam heat sink with different thicknesses.•Thermohydraulic analysis of water-graphene nanoplatelet/platinum hybrid nanofluid.•Using thermal non-equilibrium model for nanofluid flow in porous medium.•Optimization of particle diameters and porosities of the porous medium.•145% and 191% higher heat transfer for constant porosity and particle diameter modes. In the present study, fluid flow and heat transfer characteristics of a heat sink partially fitted with multilayered porous medium are analyzed. The multilayered copper foam contains three different layers placed at the bottom wall of the heat sink exposing to a uniform heat flux. The whole occupied volume of the porous region is 60% of the channel. The main objective of the current study is to reveal a layout for the porous medium with optimum thickness for each layer in two proposed models to maximize the heat transfer and minimize the pressure drop. In the constant particle diameter model, all three layers have an equal particle diameter of 1.5 cm with three porosities of 0.95, 0.85 and 0.75 from bottom to top. In the constant porosity model, all three layers have an equal porosity of 0.95 with three particle diameters of 0.5, 1 and 1.5 cm from bottom to top. To trade-off between the desirable (heat transfer) and undesirable (pressure drop) outcomes, the dimensionless number of performance evaluation criterion (PEC) is determined. Darcy–Brinkman–Forchheimer and local thermal non-equilibrium (LTNE) models are applied to solve the governing equations in the porous region. The CFD numerical simulations are conducted to analyze the effect of each layer thickness of the multilayered porous medium in the two proposed models on the thermohydraulic parameters such as friction coefficient, Nusselt number and PEC number. At the optimum layouts of the porous medium, water-graphene nanoplatelet/platinum hybrid nanofluid is applied to enhance the thermal performance of the heat sink. The obtained results reveal that the highest PEC number is achieved in the constant porosity model equal to 1.17 at the case in which the lower, middle and upper metal foam layer thicknesses are 0.6, 1 and 0.2 cm, respectively, resulting in 145% heat transfer enhancement. In constant particle diameter model, the highest PEC number equals to 1.26 at the case in which the lower, middle and upper metal foam layer thicknesses are 1, 0.6 and 0.2 cm, respectively, resulting in 191% heat transfer augmentation compared with the plain channel. Further increase in PEC number is observed by adding nanoparticles to the base fluid for nanofluid volume concentration of 0.1% in constant porosity and particle diameter models which are equal to 1.22 and 1.31, respectively.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.applthermaleng.2020.115961</doi></addata></record>
fulltext fulltext
identifier ISSN: 1359-4311
ispartof Applied thermal engineering, 2020-11, Vol.181, p.115961, Article 115961
issn 1359-4311
1873-5606
language eng
recordid cdi_proquest_journals_2487470071
source Elsevier ScienceDirect Journals
subjects Coefficient of friction
Computational fluid dynamics
Copper
Diameters
Dimensionless numbers
Equilibrium conditions
Fluid flow
Graphene
Heat flux
Heat sinks
Heat transfer
Hybrid nanofluid, Heat sink
Layouts
Local thermal non-equilibrium
Mathematical models
Metal foams
Multilayered porous media
Nanofluids
Nanoparticles
Optimal thickness
Optimization
Particle size
Performance evaluation
Platinum
Porosity
Porous media
Pressure drop
Thickness
title Thermohydraulic analysis of hybrid nanofluid in a multilayered copper foam heat sink employing local thermal non-equilibrium condition: Optimization of layers thickness
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T15%3A37%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermohydraulic%20analysis%20of%20hybrid%20nanofluid%20in%20a%20multilayered%20copper%20foam%20heat%20sink%20employing%20local%20thermal%20non-equilibrium%20condition:%20Optimization%20of%20layers%20thickness&rft.jtitle=Applied%20thermal%20engineering&rft.au=Ghaneifar,%20Milad&rft.date=2020-11-25&rft.volume=181&rft.spage=115961&rft.pages=115961-&rft.artnum=115961&rft.issn=1359-4311&rft.eissn=1873-5606&rft_id=info:doi/10.1016/j.applthermaleng.2020.115961&rft_dat=%3Cproquest_cross%3E2487470071%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2487470071&rft_id=info:pmid/&rft_els_id=S1359431120334438&rfr_iscdi=true