On the influence of thermal phenomena during cavitation through an orifice

•Upstream pressure and subcooling level have high impact on cryogenic cavitation.•Temperature drop through the orifice increases with the initial subcooling degree.•The orifice cavitates at pressures lower than the saturation one for δTsub 

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of heat and mass transfer 2021-01, Vol.164, p.120481, Article 120481
Hauptverfasser: Esposito, C., Peveroni, L., Gouriet, J.B., Steelant, J., Vetrano, M.R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 120481
container_title International journal of heat and mass transfer
container_volume 164
creator Esposito, C.
Peveroni, L.
Gouriet, J.B.
Steelant, J.
Vetrano, M.R.
description •Upstream pressure and subcooling level have high impact on cryogenic cavitation.•Temperature drop through the orifice increases with the initial subcooling degree.•The orifice cavitates at pressures lower than the saturation one for δTsub 
doi_str_mv 10.1016/j.ijheatmasstransfer.2020.120481
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2487461289</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0017931020334177</els_id><sourcerecordid>2487461289</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-481b0268acaf23bcf358ab3fed73e5ca867a9f4061d4e0492d4bb314a08d53613</originalsourceid><addsrcrecordid>eNqNkE1PwzAMhiMEEuPjP1TiwqUjX2vTG2jia5q0C5wjN03WVGsyknQS_55W5caFk2W_9mv7Qeie4CXBpHjolrZrNaQeYkwBXDQ6LCmmo0wxF-QMLYgoq5wSUZ2jBcakzCtG8CW6irGbUsyLBdrsXJZanVlnDoN2SmfeTIXQwyE7ttr5XjvImiFYt88UnGyCZP00FPywbzNwmQ_WWKVv0IWBQ9S3v_Eafb48f6zf8u3u9X39tM0VpyLl4201poUABYayWhm2ElAzo5uS6ZUCUZRQGY4L0nCNeUUbXteMcMCiWbGCsGt0N_seg_8adEyy80Nw40pJuSh5Qaioxq7HuUsFH2PQRh6D7SF8S4LlRFB28i9BORGUM8HRYjNb6PGbkx3VqOzEqLFBqyQbb_9v9gPYu4ak</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2487461289</pqid></control><display><type>article</type><title>On the influence of thermal phenomena during cavitation through an orifice</title><source>Elsevier ScienceDirect Journals</source><creator>Esposito, C. ; Peveroni, L. ; Gouriet, J.B. ; Steelant, J. ; Vetrano, M.R.</creator><creatorcontrib>Esposito, C. ; Peveroni, L. ; Gouriet, J.B. ; Steelant, J. ; Vetrano, M.R.</creatorcontrib><description>•Upstream pressure and subcooling level have high impact on cryogenic cavitation.•Temperature drop through the orifice increases with the initial subcooling degree.•The orifice cavitates at pressures lower than the saturation one for δTsub &lt; 0.03.•A peak at St 0.5 characterizes the cavitation regime regardless of the subcooling. [Display omitted] Thermal properties of cryogenic fluids can profoundly change the nature of cavitation since the fluid pressure drop is not, anymore, the only driving parameter of this phenomenon. In this research, we have conducted experiments inducing cavitation via a cylindrical orifice using Liquid Nitrogen as working fluid and exploring cavitation regimes going from bubbly cavitation to full flashing. Among others, we performed unsteady pressure measurements to derive the speed of sound during cavitation and high-speed imaging to understand the evolution of the two-phase flow along the pipe. In our analysis we use five dimensionless numbers to describe the flow conditions upstream and downstream of the orifice, and the type of transition taking place across the orifice. In this paper, we show that the fluid initial subcooling level ΔTsub upstream of the orifice and the superheat level Rp of the flow downstream of the orifice are two parameters essential to take into account the metastability of the fluid. Therefore, we propose a new semi-empirical model for predicting the effect of the fluid thermal properties on cavitation. Specifically, we define a parameter T which, multiplied by the saturation pressure at the inlet temperature, allows us to estimate the pressure reached at the orifice to cavitate.</description><identifier>ISSN: 0017-9310</identifier><identifier>EISSN: 1879-2189</identifier><identifier>DOI: 10.1016/j.ijheatmasstransfer.2020.120481</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Cavitation ; Computational fluid dynamics ; Cryogenic ; Cryogenic fluids ; Dimensionless analysis ; Dimensionless numbers ; Empirical analysis ; Fluid pressure ; Inlet temperature ; Liquid nitrogen ; Orifice ; Orifices ; Parameters ; Pressure drop ; Subcooling ; Thermodynamic properties ; Two phase flow ; Upstream ; Working fluids</subject><ispartof>International journal of heat and mass transfer, 2021-01, Vol.164, p.120481, Article 120481</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jan 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-481b0268acaf23bcf358ab3fed73e5ca867a9f4061d4e0492d4bb314a08d53613</citedby><cites>FETCH-LOGICAL-c428t-481b0268acaf23bcf358ab3fed73e5ca867a9f4061d4e0492d4bb314a08d53613</cites><orcidid>0000-0002-3134-9884</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0017931020334177$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Esposito, C.</creatorcontrib><creatorcontrib>Peveroni, L.</creatorcontrib><creatorcontrib>Gouriet, J.B.</creatorcontrib><creatorcontrib>Steelant, J.</creatorcontrib><creatorcontrib>Vetrano, M.R.</creatorcontrib><title>On the influence of thermal phenomena during cavitation through an orifice</title><title>International journal of heat and mass transfer</title><description>•Upstream pressure and subcooling level have high impact on cryogenic cavitation.•Temperature drop through the orifice increases with the initial subcooling degree.•The orifice cavitates at pressures lower than the saturation one for δTsub &lt; 0.03.•A peak at St 0.5 characterizes the cavitation regime regardless of the subcooling. [Display omitted] Thermal properties of cryogenic fluids can profoundly change the nature of cavitation since the fluid pressure drop is not, anymore, the only driving parameter of this phenomenon. In this research, we have conducted experiments inducing cavitation via a cylindrical orifice using Liquid Nitrogen as working fluid and exploring cavitation regimes going from bubbly cavitation to full flashing. Among others, we performed unsteady pressure measurements to derive the speed of sound during cavitation and high-speed imaging to understand the evolution of the two-phase flow along the pipe. In our analysis we use five dimensionless numbers to describe the flow conditions upstream and downstream of the orifice, and the type of transition taking place across the orifice. In this paper, we show that the fluid initial subcooling level ΔTsub upstream of the orifice and the superheat level Rp of the flow downstream of the orifice are two parameters essential to take into account the metastability of the fluid. Therefore, we propose a new semi-empirical model for predicting the effect of the fluid thermal properties on cavitation. Specifically, we define a parameter T which, multiplied by the saturation pressure at the inlet temperature, allows us to estimate the pressure reached at the orifice to cavitate.</description><subject>Cavitation</subject><subject>Computational fluid dynamics</subject><subject>Cryogenic</subject><subject>Cryogenic fluids</subject><subject>Dimensionless analysis</subject><subject>Dimensionless numbers</subject><subject>Empirical analysis</subject><subject>Fluid pressure</subject><subject>Inlet temperature</subject><subject>Liquid nitrogen</subject><subject>Orifice</subject><subject>Orifices</subject><subject>Parameters</subject><subject>Pressure drop</subject><subject>Subcooling</subject><subject>Thermodynamic properties</subject><subject>Two phase flow</subject><subject>Upstream</subject><subject>Working fluids</subject><issn>0017-9310</issn><issn>1879-2189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqNkE1PwzAMhiMEEuPjP1TiwqUjX2vTG2jia5q0C5wjN03WVGsyknQS_55W5caFk2W_9mv7Qeie4CXBpHjolrZrNaQeYkwBXDQ6LCmmo0wxF-QMLYgoq5wSUZ2jBcakzCtG8CW6irGbUsyLBdrsXJZanVlnDoN2SmfeTIXQwyE7ttr5XjvImiFYt88UnGyCZP00FPywbzNwmQ_WWKVv0IWBQ9S3v_Eafb48f6zf8u3u9X39tM0VpyLl4201poUABYayWhm2ElAzo5uS6ZUCUZRQGY4L0nCNeUUbXteMcMCiWbGCsGt0N_seg_8adEyy80Nw40pJuSh5Qaioxq7HuUsFH2PQRh6D7SF8S4LlRFB28i9BORGUM8HRYjNb6PGbkx3VqOzEqLFBqyQbb_9v9gPYu4ak</recordid><startdate>202101</startdate><enddate>202101</enddate><creator>Esposito, C.</creator><creator>Peveroni, L.</creator><creator>Gouriet, J.B.</creator><creator>Steelant, J.</creator><creator>Vetrano, M.R.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3134-9884</orcidid></search><sort><creationdate>202101</creationdate><title>On the influence of thermal phenomena during cavitation through an orifice</title><author>Esposito, C. ; Peveroni, L. ; Gouriet, J.B. ; Steelant, J. ; Vetrano, M.R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-481b0268acaf23bcf358ab3fed73e5ca867a9f4061d4e0492d4bb314a08d53613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Cavitation</topic><topic>Computational fluid dynamics</topic><topic>Cryogenic</topic><topic>Cryogenic fluids</topic><topic>Dimensionless analysis</topic><topic>Dimensionless numbers</topic><topic>Empirical analysis</topic><topic>Fluid pressure</topic><topic>Inlet temperature</topic><topic>Liquid nitrogen</topic><topic>Orifice</topic><topic>Orifices</topic><topic>Parameters</topic><topic>Pressure drop</topic><topic>Subcooling</topic><topic>Thermodynamic properties</topic><topic>Two phase flow</topic><topic>Upstream</topic><topic>Working fluids</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Esposito, C.</creatorcontrib><creatorcontrib>Peveroni, L.</creatorcontrib><creatorcontrib>Gouriet, J.B.</creatorcontrib><creatorcontrib>Steelant, J.</creatorcontrib><creatorcontrib>Vetrano, M.R.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of heat and mass transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Esposito, C.</au><au>Peveroni, L.</au><au>Gouriet, J.B.</au><au>Steelant, J.</au><au>Vetrano, M.R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the influence of thermal phenomena during cavitation through an orifice</atitle><jtitle>International journal of heat and mass transfer</jtitle><date>2021-01</date><risdate>2021</risdate><volume>164</volume><spage>120481</spage><pages>120481-</pages><artnum>120481</artnum><issn>0017-9310</issn><eissn>1879-2189</eissn><abstract>•Upstream pressure and subcooling level have high impact on cryogenic cavitation.•Temperature drop through the orifice increases with the initial subcooling degree.•The orifice cavitates at pressures lower than the saturation one for δTsub &lt; 0.03.•A peak at St 0.5 characterizes the cavitation regime regardless of the subcooling. [Display omitted] Thermal properties of cryogenic fluids can profoundly change the nature of cavitation since the fluid pressure drop is not, anymore, the only driving parameter of this phenomenon. In this research, we have conducted experiments inducing cavitation via a cylindrical orifice using Liquid Nitrogen as working fluid and exploring cavitation regimes going from bubbly cavitation to full flashing. Among others, we performed unsteady pressure measurements to derive the speed of sound during cavitation and high-speed imaging to understand the evolution of the two-phase flow along the pipe. In our analysis we use five dimensionless numbers to describe the flow conditions upstream and downstream of the orifice, and the type of transition taking place across the orifice. In this paper, we show that the fluid initial subcooling level ΔTsub upstream of the orifice and the superheat level Rp of the flow downstream of the orifice are two parameters essential to take into account the metastability of the fluid. Therefore, we propose a new semi-empirical model for predicting the effect of the fluid thermal properties on cavitation. Specifically, we define a parameter T which, multiplied by the saturation pressure at the inlet temperature, allows us to estimate the pressure reached at the orifice to cavitate.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijheatmasstransfer.2020.120481</doi><orcidid>https://orcid.org/0000-0002-3134-9884</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0017-9310
ispartof International journal of heat and mass transfer, 2021-01, Vol.164, p.120481, Article 120481
issn 0017-9310
1879-2189
language eng
recordid cdi_proquest_journals_2487461289
source Elsevier ScienceDirect Journals
subjects Cavitation
Computational fluid dynamics
Cryogenic
Cryogenic fluids
Dimensionless analysis
Dimensionless numbers
Empirical analysis
Fluid pressure
Inlet temperature
Liquid nitrogen
Orifice
Orifices
Parameters
Pressure drop
Subcooling
Thermodynamic properties
Two phase flow
Upstream
Working fluids
title On the influence of thermal phenomena during cavitation through an orifice
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T05%3A11%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20influence%20of%20thermal%20phenomena%20during%20cavitation%20through%20an%20orifice&rft.jtitle=International%20journal%20of%20heat%20and%20mass%20transfer&rft.au=Esposito,%20C.&rft.date=2021-01&rft.volume=164&rft.spage=120481&rft.pages=120481-&rft.artnum=120481&rft.issn=0017-9310&rft.eissn=1879-2189&rft_id=info:doi/10.1016/j.ijheatmasstransfer.2020.120481&rft_dat=%3Cproquest_cross%3E2487461289%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2487461289&rft_id=info:pmid/&rft_els_id=S0017931020334177&rfr_iscdi=true