FFT-network for bivariate Lévy option pricing

We propose a two-dimensional fast Fourier transform (FFT) network to retrieve the prices of options that depend on two Lévy processes. Applications include, but are not limited to, the valuation of options on two stocks under the Lévy processes, and options on a single stock under a random time-chan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Japan journal of industrial and applied mathematics 2021-02, Vol.38 (1), p.323-352
Hauptverfasser: Chiu, Mei Choi, Wang, Weiyin, Wong, Hoi Ying
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 352
container_issue 1
container_start_page 323
container_title Japan journal of industrial and applied mathematics
container_volume 38
creator Chiu, Mei Choi
Wang, Weiyin
Wong, Hoi Ying
description We propose a two-dimensional fast Fourier transform (FFT) network to retrieve the prices of options that depend on two Lévy processes. Applications include, but are not limited to, the valuation of options on two stocks under the Lévy processes, and options on a single stock under a random time-change Lévy process. The proposed numerical scheme can be applied to different multivariate Lévy constructions such as subordination and linear combination provided that the joint characteristic function is available. The proposed FFT-network can be thought of as a lattice approach implemented through the characteristic function. With the prevalent implementation of FFT, the network approach results in significant computational time reduction while maintaining satisfactory accuracy. Furthermore, we investigate option pricing on a single asset where the asset return and its volatility are driven by a pair of dependent Lévy processes. Such a model is also called the random time-changed Lévy process. Numerical examples are given to demonstrate the efficiency and accuracy of FFT-network applied to exotic and American-style options.
doi_str_mv 10.1007/s13160-020-00439-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2487447513</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2487447513</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-c455ff4549ffb6439b76e1662b1539a883f2f22038a8afc83dca986145549c673</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWKsv4GrAdWrul6UUxwoDbiq4C5mYlKk6qcm00kfyOXwxU0dw5-JwNt__n8MHwCVGM4yQvM6YYoEgImUQoxrKIzDBSiioqXw6BhOksYASIX4KznJeF0gojCdgVtdL2PvhI6aXKsRUtd3Ops4Ovmq-Pnf7Km6GLvbVJnWu61fn4CTY1-wvfvcUPNa3y_kCNg939_ObBjqq-AAd4zwExpkOoRXln1YKj4UgLeZUW6VoIIEQRJVVNjhFn53VSuASY9oJSafgauzdpPi-9Xkw67hNfTlpCFOSMckxLRQZKZdizskHU958s2lvMDIHL2b0YooX8-PFHKrpGMoF7lc-_VX_k_oGJzVkLA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2487447513</pqid></control><display><type>article</type><title>FFT-network for bivariate Lévy option pricing</title><source>Springer Online Journals - JUSTICE</source><creator>Chiu, Mei Choi ; Wang, Weiyin ; Wong, Hoi Ying</creator><creatorcontrib>Chiu, Mei Choi ; Wang, Weiyin ; Wong, Hoi Ying</creatorcontrib><description>We propose a two-dimensional fast Fourier transform (FFT) network to retrieve the prices of options that depend on two Lévy processes. Applications include, but are not limited to, the valuation of options on two stocks under the Lévy processes, and options on a single stock under a random time-change Lévy process. The proposed numerical scheme can be applied to different multivariate Lévy constructions such as subordination and linear combination provided that the joint characteristic function is available. The proposed FFT-network can be thought of as a lattice approach implemented through the characteristic function. With the prevalent implementation of FFT, the network approach results in significant computational time reduction while maintaining satisfactory accuracy. Furthermore, we investigate option pricing on a single asset where the asset return and its volatility are driven by a pair of dependent Lévy processes. Such a model is also called the random time-changed Lévy process. Numerical examples are given to demonstrate the efficiency and accuracy of FFT-network applied to exotic and American-style options.</description><identifier>ISSN: 0916-7005</identifier><identifier>EISSN: 1868-937X</identifier><identifier>DOI: 10.1007/s13160-020-00439-7</identifier><language>eng</language><publisher>Tokyo: Springer Japan</publisher><subject>Accuracy ; Applications of Mathematics ; Bivariate analysis ; Characteristic functions ; Computational Mathematics and Numerical Analysis ; Computing time ; Fast Fourier transformations ; Fourier transforms ; Mathematics ; Mathematics and Statistics ; Original Paper ; Pricing ; Stochastic processes ; Volatility</subject><ispartof>Japan journal of industrial and applied mathematics, 2021-02, Vol.38 (1), p.323-352</ispartof><rights>The JJIAM Publishing Committee and Springer Japan KK, part of Springer Nature 2020</rights><rights>The JJIAM Publishing Committee and Springer Japan KK, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-c455ff4549ffb6439b76e1662b1539a883f2f22038a8afc83dca986145549c673</citedby><cites>FETCH-LOGICAL-c385t-c455ff4549ffb6439b76e1662b1539a883f2f22038a8afc83dca986145549c673</cites><orcidid>0000-0001-9743-1832</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13160-020-00439-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s13160-020-00439-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Chiu, Mei Choi</creatorcontrib><creatorcontrib>Wang, Weiyin</creatorcontrib><creatorcontrib>Wong, Hoi Ying</creatorcontrib><title>FFT-network for bivariate Lévy option pricing</title><title>Japan journal of industrial and applied mathematics</title><addtitle>Japan J. Indust. Appl. Math</addtitle><description>We propose a two-dimensional fast Fourier transform (FFT) network to retrieve the prices of options that depend on two Lévy processes. Applications include, but are not limited to, the valuation of options on two stocks under the Lévy processes, and options on a single stock under a random time-change Lévy process. The proposed numerical scheme can be applied to different multivariate Lévy constructions such as subordination and linear combination provided that the joint characteristic function is available. The proposed FFT-network can be thought of as a lattice approach implemented through the characteristic function. With the prevalent implementation of FFT, the network approach results in significant computational time reduction while maintaining satisfactory accuracy. Furthermore, we investigate option pricing on a single asset where the asset return and its volatility are driven by a pair of dependent Lévy processes. Such a model is also called the random time-changed Lévy process. Numerical examples are given to demonstrate the efficiency and accuracy of FFT-network applied to exotic and American-style options.</description><subject>Accuracy</subject><subject>Applications of Mathematics</subject><subject>Bivariate analysis</subject><subject>Characteristic functions</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Computing time</subject><subject>Fast Fourier transformations</subject><subject>Fourier transforms</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Original Paper</subject><subject>Pricing</subject><subject>Stochastic processes</subject><subject>Volatility</subject><issn>0916-7005</issn><issn>1868-937X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKAzEUhoMoWKsv4GrAdWrul6UUxwoDbiq4C5mYlKk6qcm00kfyOXwxU0dw5-JwNt__n8MHwCVGM4yQvM6YYoEgImUQoxrKIzDBSiioqXw6BhOksYASIX4KznJeF0gojCdgVtdL2PvhI6aXKsRUtd3Ops4Ovmq-Pnf7Km6GLvbVJnWu61fn4CTY1-wvfvcUPNa3y_kCNg939_ObBjqq-AAd4zwExpkOoRXln1YKj4UgLeZUW6VoIIEQRJVVNjhFn53VSuASY9oJSafgauzdpPi-9Xkw67hNfTlpCFOSMckxLRQZKZdizskHU958s2lvMDIHL2b0YooX8-PFHKrpGMoF7lc-_VX_k_oGJzVkLA</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Chiu, Mei Choi</creator><creator>Wang, Weiyin</creator><creator>Wong, Hoi Ying</creator><general>Springer Japan</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-9743-1832</orcidid></search><sort><creationdate>20210201</creationdate><title>FFT-network for bivariate Lévy option pricing</title><author>Chiu, Mei Choi ; Wang, Weiyin ; Wong, Hoi Ying</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-c455ff4549ffb6439b76e1662b1539a883f2f22038a8afc83dca986145549c673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accuracy</topic><topic>Applications of Mathematics</topic><topic>Bivariate analysis</topic><topic>Characteristic functions</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Computing time</topic><topic>Fast Fourier transformations</topic><topic>Fourier transforms</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Original Paper</topic><topic>Pricing</topic><topic>Stochastic processes</topic><topic>Volatility</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chiu, Mei Choi</creatorcontrib><creatorcontrib>Wang, Weiyin</creatorcontrib><creatorcontrib>Wong, Hoi Ying</creatorcontrib><collection>CrossRef</collection><jtitle>Japan journal of industrial and applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chiu, Mei Choi</au><au>Wang, Weiyin</au><au>Wong, Hoi Ying</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>FFT-network for bivariate Lévy option pricing</atitle><jtitle>Japan journal of industrial and applied mathematics</jtitle><stitle>Japan J. Indust. Appl. Math</stitle><date>2021-02-01</date><risdate>2021</risdate><volume>38</volume><issue>1</issue><spage>323</spage><epage>352</epage><pages>323-352</pages><issn>0916-7005</issn><eissn>1868-937X</eissn><abstract>We propose a two-dimensional fast Fourier transform (FFT) network to retrieve the prices of options that depend on two Lévy processes. Applications include, but are not limited to, the valuation of options on two stocks under the Lévy processes, and options on a single stock under a random time-change Lévy process. The proposed numerical scheme can be applied to different multivariate Lévy constructions such as subordination and linear combination provided that the joint characteristic function is available. The proposed FFT-network can be thought of as a lattice approach implemented through the characteristic function. With the prevalent implementation of FFT, the network approach results in significant computational time reduction while maintaining satisfactory accuracy. Furthermore, we investigate option pricing on a single asset where the asset return and its volatility are driven by a pair of dependent Lévy processes. Such a model is also called the random time-changed Lévy process. Numerical examples are given to demonstrate the efficiency and accuracy of FFT-network applied to exotic and American-style options.</abstract><cop>Tokyo</cop><pub>Springer Japan</pub><doi>10.1007/s13160-020-00439-7</doi><tpages>30</tpages><orcidid>https://orcid.org/0000-0001-9743-1832</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0916-7005
ispartof Japan journal of industrial and applied mathematics, 2021-02, Vol.38 (1), p.323-352
issn 0916-7005
1868-937X
language eng
recordid cdi_proquest_journals_2487447513
source Springer Online Journals - JUSTICE
subjects Accuracy
Applications of Mathematics
Bivariate analysis
Characteristic functions
Computational Mathematics and Numerical Analysis
Computing time
Fast Fourier transformations
Fourier transforms
Mathematics
Mathematics and Statistics
Original Paper
Pricing
Stochastic processes
Volatility
title FFT-network for bivariate Lévy option pricing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T15%3A22%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=FFT-network%20for%20bivariate%20L%C3%A9vy%20option%20pricing&rft.jtitle=Japan%20journal%20of%20industrial%20and%20applied%20mathematics&rft.au=Chiu,%20Mei%20Choi&rft.date=2021-02-01&rft.volume=38&rft.issue=1&rft.spage=323&rft.epage=352&rft.pages=323-352&rft.issn=0916-7005&rft.eissn=1868-937X&rft_id=info:doi/10.1007/s13160-020-00439-7&rft_dat=%3Cproquest_cross%3E2487447513%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2487447513&rft_id=info:pmid/&rfr_iscdi=true