FFT-network for bivariate Lévy option pricing
We propose a two-dimensional fast Fourier transform (FFT) network to retrieve the prices of options that depend on two Lévy processes. Applications include, but are not limited to, the valuation of options on two stocks under the Lévy processes, and options on a single stock under a random time-chan...
Gespeichert in:
Veröffentlicht in: | Japan journal of industrial and applied mathematics 2021-02, Vol.38 (1), p.323-352 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 352 |
---|---|
container_issue | 1 |
container_start_page | 323 |
container_title | Japan journal of industrial and applied mathematics |
container_volume | 38 |
creator | Chiu, Mei Choi Wang, Weiyin Wong, Hoi Ying |
description | We propose a two-dimensional fast Fourier transform (FFT) network to retrieve the prices of options that depend on two Lévy processes. Applications include, but are not limited to, the valuation of options on two stocks under the Lévy processes, and options on a single stock under a random time-change Lévy process. The proposed numerical scheme can be applied to different multivariate Lévy constructions such as subordination and linear combination provided that the joint characteristic function is available. The proposed FFT-network can be thought of as a lattice approach implemented through the characteristic function. With the prevalent implementation of FFT, the network approach results in significant computational time reduction while maintaining satisfactory accuracy. Furthermore, we investigate option pricing on a single asset where the asset return and its volatility are driven by a pair of dependent Lévy processes. Such a model is also called the random time-changed Lévy process. Numerical examples are given to demonstrate the efficiency and accuracy of FFT-network applied to exotic and American-style options. |
doi_str_mv | 10.1007/s13160-020-00439-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2487447513</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2487447513</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-c455ff4549ffb6439b76e1662b1539a883f2f22038a8afc83dca986145549c673</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWKsv4GrAdWrul6UUxwoDbiq4C5mYlKk6qcm00kfyOXwxU0dw5-JwNt__n8MHwCVGM4yQvM6YYoEgImUQoxrKIzDBSiioqXw6BhOksYASIX4KznJeF0gojCdgVtdL2PvhI6aXKsRUtd3Ops4Ovmq-Pnf7Km6GLvbVJnWu61fn4CTY1-wvfvcUPNa3y_kCNg939_ObBjqq-AAd4zwExpkOoRXln1YKj4UgLeZUW6VoIIEQRJVVNjhFn53VSuASY9oJSafgauzdpPi-9Xkw67hNfTlpCFOSMckxLRQZKZdizskHU958s2lvMDIHL2b0YooX8-PFHKrpGMoF7lc-_VX_k_oGJzVkLA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2487447513</pqid></control><display><type>article</type><title>FFT-network for bivariate Lévy option pricing</title><source>Springer Online Journals - JUSTICE</source><creator>Chiu, Mei Choi ; Wang, Weiyin ; Wong, Hoi Ying</creator><creatorcontrib>Chiu, Mei Choi ; Wang, Weiyin ; Wong, Hoi Ying</creatorcontrib><description>We propose a two-dimensional fast Fourier transform (FFT) network to retrieve the prices of options that depend on two Lévy processes. Applications include, but are not limited to, the valuation of options on two stocks under the Lévy processes, and options on a single stock under a random time-change Lévy process. The proposed numerical scheme can be applied to different multivariate Lévy constructions such as subordination and linear combination provided that the joint characteristic function is available. The proposed FFT-network can be thought of as a lattice approach implemented through the characteristic function. With the prevalent implementation of FFT, the network approach results in significant computational time reduction while maintaining satisfactory accuracy. Furthermore, we investigate option pricing on a single asset where the asset return and its volatility are driven by a pair of dependent Lévy processes. Such a model is also called the random time-changed Lévy process. Numerical examples are given to demonstrate the efficiency and accuracy of FFT-network applied to exotic and American-style options.</description><identifier>ISSN: 0916-7005</identifier><identifier>EISSN: 1868-937X</identifier><identifier>DOI: 10.1007/s13160-020-00439-7</identifier><language>eng</language><publisher>Tokyo: Springer Japan</publisher><subject>Accuracy ; Applications of Mathematics ; Bivariate analysis ; Characteristic functions ; Computational Mathematics and Numerical Analysis ; Computing time ; Fast Fourier transformations ; Fourier transforms ; Mathematics ; Mathematics and Statistics ; Original Paper ; Pricing ; Stochastic processes ; Volatility</subject><ispartof>Japan journal of industrial and applied mathematics, 2021-02, Vol.38 (1), p.323-352</ispartof><rights>The JJIAM Publishing Committee and Springer Japan KK, part of Springer Nature 2020</rights><rights>The JJIAM Publishing Committee and Springer Japan KK, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-c455ff4549ffb6439b76e1662b1539a883f2f22038a8afc83dca986145549c673</citedby><cites>FETCH-LOGICAL-c385t-c455ff4549ffb6439b76e1662b1539a883f2f22038a8afc83dca986145549c673</cites><orcidid>0000-0001-9743-1832</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13160-020-00439-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s13160-020-00439-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Chiu, Mei Choi</creatorcontrib><creatorcontrib>Wang, Weiyin</creatorcontrib><creatorcontrib>Wong, Hoi Ying</creatorcontrib><title>FFT-network for bivariate Lévy option pricing</title><title>Japan journal of industrial and applied mathematics</title><addtitle>Japan J. Indust. Appl. Math</addtitle><description>We propose a two-dimensional fast Fourier transform (FFT) network to retrieve the prices of options that depend on two Lévy processes. Applications include, but are not limited to, the valuation of options on two stocks under the Lévy processes, and options on a single stock under a random time-change Lévy process. The proposed numerical scheme can be applied to different multivariate Lévy constructions such as subordination and linear combination provided that the joint characteristic function is available. The proposed FFT-network can be thought of as a lattice approach implemented through the characteristic function. With the prevalent implementation of FFT, the network approach results in significant computational time reduction while maintaining satisfactory accuracy. Furthermore, we investigate option pricing on a single asset where the asset return and its volatility are driven by a pair of dependent Lévy processes. Such a model is also called the random time-changed Lévy process. Numerical examples are given to demonstrate the efficiency and accuracy of FFT-network applied to exotic and American-style options.</description><subject>Accuracy</subject><subject>Applications of Mathematics</subject><subject>Bivariate analysis</subject><subject>Characteristic functions</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Computing time</subject><subject>Fast Fourier transformations</subject><subject>Fourier transforms</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Original Paper</subject><subject>Pricing</subject><subject>Stochastic processes</subject><subject>Volatility</subject><issn>0916-7005</issn><issn>1868-937X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKAzEUhoMoWKsv4GrAdWrul6UUxwoDbiq4C5mYlKk6qcm00kfyOXwxU0dw5-JwNt__n8MHwCVGM4yQvM6YYoEgImUQoxrKIzDBSiioqXw6BhOksYASIX4KznJeF0gojCdgVtdL2PvhI6aXKsRUtd3Ops4Ovmq-Pnf7Km6GLvbVJnWu61fn4CTY1-wvfvcUPNa3y_kCNg939_ObBjqq-AAd4zwExpkOoRXln1YKj4UgLeZUW6VoIIEQRJVVNjhFn53VSuASY9oJSafgauzdpPi-9Xkw67hNfTlpCFOSMckxLRQZKZdizskHU958s2lvMDIHL2b0YooX8-PFHKrpGMoF7lc-_VX_k_oGJzVkLA</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Chiu, Mei Choi</creator><creator>Wang, Weiyin</creator><creator>Wong, Hoi Ying</creator><general>Springer Japan</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-9743-1832</orcidid></search><sort><creationdate>20210201</creationdate><title>FFT-network for bivariate Lévy option pricing</title><author>Chiu, Mei Choi ; Wang, Weiyin ; Wong, Hoi Ying</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-c455ff4549ffb6439b76e1662b1539a883f2f22038a8afc83dca986145549c673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accuracy</topic><topic>Applications of Mathematics</topic><topic>Bivariate analysis</topic><topic>Characteristic functions</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Computing time</topic><topic>Fast Fourier transformations</topic><topic>Fourier transforms</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Original Paper</topic><topic>Pricing</topic><topic>Stochastic processes</topic><topic>Volatility</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chiu, Mei Choi</creatorcontrib><creatorcontrib>Wang, Weiyin</creatorcontrib><creatorcontrib>Wong, Hoi Ying</creatorcontrib><collection>CrossRef</collection><jtitle>Japan journal of industrial and applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chiu, Mei Choi</au><au>Wang, Weiyin</au><au>Wong, Hoi Ying</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>FFT-network for bivariate Lévy option pricing</atitle><jtitle>Japan journal of industrial and applied mathematics</jtitle><stitle>Japan J. Indust. Appl. Math</stitle><date>2021-02-01</date><risdate>2021</risdate><volume>38</volume><issue>1</issue><spage>323</spage><epage>352</epage><pages>323-352</pages><issn>0916-7005</issn><eissn>1868-937X</eissn><abstract>We propose a two-dimensional fast Fourier transform (FFT) network to retrieve the prices of options that depend on two Lévy processes. Applications include, but are not limited to, the valuation of options on two stocks under the Lévy processes, and options on a single stock under a random time-change Lévy process. The proposed numerical scheme can be applied to different multivariate Lévy constructions such as subordination and linear combination provided that the joint characteristic function is available. The proposed FFT-network can be thought of as a lattice approach implemented through the characteristic function. With the prevalent implementation of FFT, the network approach results in significant computational time reduction while maintaining satisfactory accuracy. Furthermore, we investigate option pricing on a single asset where the asset return and its volatility are driven by a pair of dependent Lévy processes. Such a model is also called the random time-changed Lévy process. Numerical examples are given to demonstrate the efficiency and accuracy of FFT-network applied to exotic and American-style options.</abstract><cop>Tokyo</cop><pub>Springer Japan</pub><doi>10.1007/s13160-020-00439-7</doi><tpages>30</tpages><orcidid>https://orcid.org/0000-0001-9743-1832</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0916-7005 |
ispartof | Japan journal of industrial and applied mathematics, 2021-02, Vol.38 (1), p.323-352 |
issn | 0916-7005 1868-937X |
language | eng |
recordid | cdi_proquest_journals_2487447513 |
source | Springer Online Journals - JUSTICE |
subjects | Accuracy Applications of Mathematics Bivariate analysis Characteristic functions Computational Mathematics and Numerical Analysis Computing time Fast Fourier transformations Fourier transforms Mathematics Mathematics and Statistics Original Paper Pricing Stochastic processes Volatility |
title | FFT-network for bivariate Lévy option pricing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T15%3A22%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=FFT-network%20for%20bivariate%20L%C3%A9vy%20option%20pricing&rft.jtitle=Japan%20journal%20of%20industrial%20and%20applied%20mathematics&rft.au=Chiu,%20Mei%20Choi&rft.date=2021-02-01&rft.volume=38&rft.issue=1&rft.spage=323&rft.epage=352&rft.pages=323-352&rft.issn=0916-7005&rft.eissn=1868-937X&rft_id=info:doi/10.1007/s13160-020-00439-7&rft_dat=%3Cproquest_cross%3E2487447513%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2487447513&rft_id=info:pmid/&rfr_iscdi=true |