Dissipative Solutions to Compressible Navier–Stokes Equations with General Inflow–Outflow Data: Existence, Stability and Weak Strong Uniqueness
So far existence of dissipative weak solutions for the compressible Navier–Stokes equations (i.e. weak solutions satisfying the relative energy inequality) is known only in the case of boundary conditions with non zero inflow/outflow (i.e., in particular, when the normal component of the velocity on...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical fluid mechanics 2021, Vol.23 (1), Article 23 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | Journal of mathematical fluid mechanics |
container_volume | 23 |
creator | Kwon, Young-Sam Novotny, Antonin |
description | So far existence of dissipative weak solutions for the compressible Navier–Stokes equations (i.e. weak solutions satisfying the relative energy inequality) is known only in the case of boundary conditions with non zero inflow/outflow (i.e., in particular, when the normal component of the velocity on the boundary of the flow domain is equal to zero). Most of physical applications (as flows in wind tunnels, pipes, reactors of jet engines) requires to consider non-zero inflow–outflow boundary condtions. We prove existence of dissipative weak solutions to the compressible Navier–Stokes equations in barotropic regime (adiabatic coefficient
γ
>
3
/
2
, in three dimensions,
γ
>
1
in two dimensions) with large velocity prescribed at the boundary and large density prescribed at the inflow boundary of a bounded piecewise regular Lipschitz domain, without any restriction neither on the shape of the inflow/outflow boundaries nor on the shape of the domain. It is well known that the relative energy inequality has many applications, e.g., to investigation of incompressible or inviscid limits, to the dimension reduction of flows, to the error estimates of numerical schemes. In this paper we deal with one of its basic applications, namely weak–strong uniqueness principle. |
doi_str_mv | 10.1007/s00021-020-00553-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2487447174</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2487447174</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-529152c4b5bec443ad0c0de4a468c02e8a960bdc4d2a740fdf59cd693ab5b04f3</originalsourceid><addsrcrecordid>eNp9kEFOwzAQRSMEEqVwAVaW2BKYOHbSsEOlQKWKLkrF0nIcpxiCXWwHKCvu0BtyElyCYMdqRjPv_y_9KDpM4CQByE8dAOAkBgwxAKVp_L4V9RKCcZwVFG__7niwG-059wCQ5LTAvWh9oZxTS-7Vi0Qz07ReGe2QN2honpZWhmfZSHTDX5S0nx_rmTeP0qHRc8s78lX5e3QltbS8QWNdN-Y1YNPWbzZ0wT0_Q6M35bzUQh6jmeelapRfIa4rdCf5YzhZoxdortVzG3yc2492at44efAz-9H8cnQ7vI4n06vx8HwSi5RmPqa4SCgWpKSlFISkvAIBlSScZAMBWA54kUFZCVJhnhOoq5oWosqKlAcFkDrtR0ed79KaEO08ezCt1SGSYTLICcmTnAQKd5Swxjkra7a06onbFUuAbcpnXfkslM--y2fvQZR2IhdgvZD2z_of1Rezno12</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2487447174</pqid></control><display><type>article</type><title>Dissipative Solutions to Compressible Navier–Stokes Equations with General Inflow–Outflow Data: Existence, Stability and Weak Strong Uniqueness</title><source>SpringerLink Journals - AutoHoldings</source><creator>Kwon, Young-Sam ; Novotny, Antonin</creator><creatorcontrib>Kwon, Young-Sam ; Novotny, Antonin</creatorcontrib><description>So far existence of dissipative weak solutions for the compressible Navier–Stokes equations (i.e. weak solutions satisfying the relative energy inequality) is known only in the case of boundary conditions with non zero inflow/outflow (i.e., in particular, when the normal component of the velocity on the boundary of the flow domain is equal to zero). Most of physical applications (as flows in wind tunnels, pipes, reactors of jet engines) requires to consider non-zero inflow–outflow boundary condtions. We prove existence of dissipative weak solutions to the compressible Navier–Stokes equations in barotropic regime (adiabatic coefficient
γ
>
3
/
2
, in three dimensions,
γ
>
1
in two dimensions) with large velocity prescribed at the boundary and large density prescribed at the inflow boundary of a bounded piecewise regular Lipschitz domain, without any restriction neither on the shape of the inflow/outflow boundaries nor on the shape of the domain. It is well known that the relative energy inequality has many applications, e.g., to investigation of incompressible or inviscid limits, to the dimension reduction of flows, to the error estimates of numerical schemes. In this paper we deal with one of its basic applications, namely weak–strong uniqueness principle.</description><identifier>ISSN: 1422-6928</identifier><identifier>EISSN: 1422-6952</identifier><identifier>DOI: 10.1007/s00021-020-00553-z</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Boundary conditions ; Classical and Continuum Physics ; Compressibility ; Computational fluid dynamics ; Domains ; Fluid flow ; Fluid mechanics ; Fluid- and Aerodynamics ; Incompressible flow ; Inflow ; Jet engines ; Mathematical Methods in Physics ; Navier-Stokes equations ; Outflow ; Physics ; Physics and Astronomy ; Theoretical mathematics ; Uniqueness ; Wind tunnels</subject><ispartof>Journal of mathematical fluid mechanics, 2021, Vol.23 (1), Article 23</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-529152c4b5bec443ad0c0de4a468c02e8a960bdc4d2a740fdf59cd693ab5b04f3</citedby><cites>FETCH-LOGICAL-c356t-529152c4b5bec443ad0c0de4a468c02e8a960bdc4d2a740fdf59cd693ab5b04f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00021-020-00553-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00021-020-00553-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Kwon, Young-Sam</creatorcontrib><creatorcontrib>Novotny, Antonin</creatorcontrib><title>Dissipative Solutions to Compressible Navier–Stokes Equations with General Inflow–Outflow Data: Existence, Stability and Weak Strong Uniqueness</title><title>Journal of mathematical fluid mechanics</title><addtitle>J. Math. Fluid Mech</addtitle><description>So far existence of dissipative weak solutions for the compressible Navier–Stokes equations (i.e. weak solutions satisfying the relative energy inequality) is known only in the case of boundary conditions with non zero inflow/outflow (i.e., in particular, when the normal component of the velocity on the boundary of the flow domain is equal to zero). Most of physical applications (as flows in wind tunnels, pipes, reactors of jet engines) requires to consider non-zero inflow–outflow boundary condtions. We prove existence of dissipative weak solutions to the compressible Navier–Stokes equations in barotropic regime (adiabatic coefficient
γ
>
3
/
2
, in three dimensions,
γ
>
1
in two dimensions) with large velocity prescribed at the boundary and large density prescribed at the inflow boundary of a bounded piecewise regular Lipschitz domain, without any restriction neither on the shape of the inflow/outflow boundaries nor on the shape of the domain. It is well known that the relative energy inequality has many applications, e.g., to investigation of incompressible or inviscid limits, to the dimension reduction of flows, to the error estimates of numerical schemes. In this paper we deal with one of its basic applications, namely weak–strong uniqueness principle.</description><subject>Boundary conditions</subject><subject>Classical and Continuum Physics</subject><subject>Compressibility</subject><subject>Computational fluid dynamics</subject><subject>Domains</subject><subject>Fluid flow</subject><subject>Fluid mechanics</subject><subject>Fluid- and Aerodynamics</subject><subject>Incompressible flow</subject><subject>Inflow</subject><subject>Jet engines</subject><subject>Mathematical Methods in Physics</subject><subject>Navier-Stokes equations</subject><subject>Outflow</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Theoretical mathematics</subject><subject>Uniqueness</subject><subject>Wind tunnels</subject><issn>1422-6928</issn><issn>1422-6952</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kEFOwzAQRSMEEqVwAVaW2BKYOHbSsEOlQKWKLkrF0nIcpxiCXWwHKCvu0BtyElyCYMdqRjPv_y_9KDpM4CQByE8dAOAkBgwxAKVp_L4V9RKCcZwVFG__7niwG-059wCQ5LTAvWh9oZxTS-7Vi0Qz07ReGe2QN2honpZWhmfZSHTDX5S0nx_rmTeP0qHRc8s78lX5e3QltbS8QWNdN-Y1YNPWbzZ0wT0_Q6M35bzUQh6jmeelapRfIa4rdCf5YzhZoxdortVzG3yc2492at44efAz-9H8cnQ7vI4n06vx8HwSi5RmPqa4SCgWpKSlFISkvAIBlSScZAMBWA54kUFZCVJhnhOoq5oWosqKlAcFkDrtR0ed79KaEO08ezCt1SGSYTLICcmTnAQKd5Swxjkra7a06onbFUuAbcpnXfkslM--y2fvQZR2IhdgvZD2z_of1Rezno12</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Kwon, Young-Sam</creator><creator>Novotny, Antonin</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2021</creationdate><title>Dissipative Solutions to Compressible Navier–Stokes Equations with General Inflow–Outflow Data: Existence, Stability and Weak Strong Uniqueness</title><author>Kwon, Young-Sam ; Novotny, Antonin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-529152c4b5bec443ad0c0de4a468c02e8a960bdc4d2a740fdf59cd693ab5b04f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Boundary conditions</topic><topic>Classical and Continuum Physics</topic><topic>Compressibility</topic><topic>Computational fluid dynamics</topic><topic>Domains</topic><topic>Fluid flow</topic><topic>Fluid mechanics</topic><topic>Fluid- and Aerodynamics</topic><topic>Incompressible flow</topic><topic>Inflow</topic><topic>Jet engines</topic><topic>Mathematical Methods in Physics</topic><topic>Navier-Stokes equations</topic><topic>Outflow</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Theoretical mathematics</topic><topic>Uniqueness</topic><topic>Wind tunnels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kwon, Young-Sam</creatorcontrib><creatorcontrib>Novotny, Antonin</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of mathematical fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kwon, Young-Sam</au><au>Novotny, Antonin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dissipative Solutions to Compressible Navier–Stokes Equations with General Inflow–Outflow Data: Existence, Stability and Weak Strong Uniqueness</atitle><jtitle>Journal of mathematical fluid mechanics</jtitle><stitle>J. Math. Fluid Mech</stitle><date>2021</date><risdate>2021</risdate><volume>23</volume><issue>1</issue><artnum>23</artnum><issn>1422-6928</issn><eissn>1422-6952</eissn><abstract>So far existence of dissipative weak solutions for the compressible Navier–Stokes equations (i.e. weak solutions satisfying the relative energy inequality) is known only in the case of boundary conditions with non zero inflow/outflow (i.e., in particular, when the normal component of the velocity on the boundary of the flow domain is equal to zero). Most of physical applications (as flows in wind tunnels, pipes, reactors of jet engines) requires to consider non-zero inflow–outflow boundary condtions. We prove existence of dissipative weak solutions to the compressible Navier–Stokes equations in barotropic regime (adiabatic coefficient
γ
>
3
/
2
, in three dimensions,
γ
>
1
in two dimensions) with large velocity prescribed at the boundary and large density prescribed at the inflow boundary of a bounded piecewise regular Lipschitz domain, without any restriction neither on the shape of the inflow/outflow boundaries nor on the shape of the domain. It is well known that the relative energy inequality has many applications, e.g., to investigation of incompressible or inviscid limits, to the dimension reduction of flows, to the error estimates of numerical schemes. In this paper we deal with one of its basic applications, namely weak–strong uniqueness principle.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00021-020-00553-z</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1422-6928 |
ispartof | Journal of mathematical fluid mechanics, 2021, Vol.23 (1), Article 23 |
issn | 1422-6928 1422-6952 |
language | eng |
recordid | cdi_proquest_journals_2487447174 |
source | SpringerLink Journals - AutoHoldings |
subjects | Boundary conditions Classical and Continuum Physics Compressibility Computational fluid dynamics Domains Fluid flow Fluid mechanics Fluid- and Aerodynamics Incompressible flow Inflow Jet engines Mathematical Methods in Physics Navier-Stokes equations Outflow Physics Physics and Astronomy Theoretical mathematics Uniqueness Wind tunnels |
title | Dissipative Solutions to Compressible Navier–Stokes Equations with General Inflow–Outflow Data: Existence, Stability and Weak Strong Uniqueness |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T23%3A37%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dissipative%20Solutions%20to%20Compressible%20Navier%E2%80%93Stokes%20Equations%20with%20General%20Inflow%E2%80%93Outflow%20Data:%20Existence,%20Stability%20and%20Weak%20Strong%20Uniqueness&rft.jtitle=Journal%20of%20mathematical%20fluid%20mechanics&rft.au=Kwon,%20Young-Sam&rft.date=2021&rft.volume=23&rft.issue=1&rft.artnum=23&rft.issn=1422-6928&rft.eissn=1422-6952&rft_id=info:doi/10.1007/s00021-020-00553-z&rft_dat=%3Cproquest_cross%3E2487447174%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2487447174&rft_id=info:pmid/&rfr_iscdi=true |