Dissipative Solutions to Compressible Navier–Stokes Equations with General Inflow–Outflow Data: Existence, Stability and Weak Strong Uniqueness

So far existence of dissipative weak solutions for the compressible Navier–Stokes equations (i.e. weak solutions satisfying the relative energy inequality) is known only in the case of boundary conditions with non zero inflow/outflow (i.e., in particular, when the normal component of the velocity on...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical fluid mechanics 2021, Vol.23 (1), Article 23
Hauptverfasser: Kwon, Young-Sam, Novotny, Antonin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title Journal of mathematical fluid mechanics
container_volume 23
creator Kwon, Young-Sam
Novotny, Antonin
description So far existence of dissipative weak solutions for the compressible Navier–Stokes equations (i.e. weak solutions satisfying the relative energy inequality) is known only in the case of boundary conditions with non zero inflow/outflow (i.e., in particular, when the normal component of the velocity on the boundary of the flow domain is equal to zero). Most of physical applications (as flows in wind tunnels, pipes, reactors of jet engines) requires to consider non-zero inflow–outflow boundary condtions. We prove existence of dissipative weak solutions to the compressible Navier–Stokes equations in barotropic regime (adiabatic coefficient γ > 3 / 2 , in three dimensions, γ > 1 in two dimensions) with large velocity prescribed at the boundary and large density prescribed at the inflow boundary of a bounded piecewise regular Lipschitz domain, without any restriction neither on the shape of the inflow/outflow boundaries nor on the shape of the domain. It is well known that the relative energy inequality has many applications, e.g., to investigation of incompressible or inviscid limits, to the dimension reduction of flows, to the error estimates of numerical schemes. In this paper we deal with one of its basic applications, namely weak–strong uniqueness principle.
doi_str_mv 10.1007/s00021-020-00553-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2487447174</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2487447174</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-529152c4b5bec443ad0c0de4a468c02e8a960bdc4d2a740fdf59cd693ab5b04f3</originalsourceid><addsrcrecordid>eNp9kEFOwzAQRSMEEqVwAVaW2BKYOHbSsEOlQKWKLkrF0nIcpxiCXWwHKCvu0BtyElyCYMdqRjPv_y_9KDpM4CQByE8dAOAkBgwxAKVp_L4V9RKCcZwVFG__7niwG-059wCQ5LTAvWh9oZxTS-7Vi0Qz07ReGe2QN2honpZWhmfZSHTDX5S0nx_rmTeP0qHRc8s78lX5e3QltbS8QWNdN-Y1YNPWbzZ0wT0_Q6M35bzUQh6jmeelapRfIa4rdCf5YzhZoxdortVzG3yc2492at44efAz-9H8cnQ7vI4n06vx8HwSi5RmPqa4SCgWpKSlFISkvAIBlSScZAMBWA54kUFZCVJhnhOoq5oWosqKlAcFkDrtR0ed79KaEO08ezCt1SGSYTLICcmTnAQKd5Swxjkra7a06onbFUuAbcpnXfkslM--y2fvQZR2IhdgvZD2z_of1Rezno12</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2487447174</pqid></control><display><type>article</type><title>Dissipative Solutions to Compressible Navier–Stokes Equations with General Inflow–Outflow Data: Existence, Stability and Weak Strong Uniqueness</title><source>SpringerLink Journals - AutoHoldings</source><creator>Kwon, Young-Sam ; Novotny, Antonin</creator><creatorcontrib>Kwon, Young-Sam ; Novotny, Antonin</creatorcontrib><description>So far existence of dissipative weak solutions for the compressible Navier–Stokes equations (i.e. weak solutions satisfying the relative energy inequality) is known only in the case of boundary conditions with non zero inflow/outflow (i.e., in particular, when the normal component of the velocity on the boundary of the flow domain is equal to zero). Most of physical applications (as flows in wind tunnels, pipes, reactors of jet engines) requires to consider non-zero inflow–outflow boundary condtions. We prove existence of dissipative weak solutions to the compressible Navier–Stokes equations in barotropic regime (adiabatic coefficient γ &gt; 3 / 2 , in three dimensions, γ &gt; 1 in two dimensions) with large velocity prescribed at the boundary and large density prescribed at the inflow boundary of a bounded piecewise regular Lipschitz domain, without any restriction neither on the shape of the inflow/outflow boundaries nor on the shape of the domain. It is well known that the relative energy inequality has many applications, e.g., to investigation of incompressible or inviscid limits, to the dimension reduction of flows, to the error estimates of numerical schemes. In this paper we deal with one of its basic applications, namely weak–strong uniqueness principle.</description><identifier>ISSN: 1422-6928</identifier><identifier>EISSN: 1422-6952</identifier><identifier>DOI: 10.1007/s00021-020-00553-z</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Boundary conditions ; Classical and Continuum Physics ; Compressibility ; Computational fluid dynamics ; Domains ; Fluid flow ; Fluid mechanics ; Fluid- and Aerodynamics ; Incompressible flow ; Inflow ; Jet engines ; Mathematical Methods in Physics ; Navier-Stokes equations ; Outflow ; Physics ; Physics and Astronomy ; Theoretical mathematics ; Uniqueness ; Wind tunnels</subject><ispartof>Journal of mathematical fluid mechanics, 2021, Vol.23 (1), Article 23</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-529152c4b5bec443ad0c0de4a468c02e8a960bdc4d2a740fdf59cd693ab5b04f3</citedby><cites>FETCH-LOGICAL-c356t-529152c4b5bec443ad0c0de4a468c02e8a960bdc4d2a740fdf59cd693ab5b04f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00021-020-00553-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00021-020-00553-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Kwon, Young-Sam</creatorcontrib><creatorcontrib>Novotny, Antonin</creatorcontrib><title>Dissipative Solutions to Compressible Navier–Stokes Equations with General Inflow–Outflow Data: Existence, Stability and Weak Strong Uniqueness</title><title>Journal of mathematical fluid mechanics</title><addtitle>J. Math. Fluid Mech</addtitle><description>So far existence of dissipative weak solutions for the compressible Navier–Stokes equations (i.e. weak solutions satisfying the relative energy inequality) is known only in the case of boundary conditions with non zero inflow/outflow (i.e., in particular, when the normal component of the velocity on the boundary of the flow domain is equal to zero). Most of physical applications (as flows in wind tunnels, pipes, reactors of jet engines) requires to consider non-zero inflow–outflow boundary condtions. We prove existence of dissipative weak solutions to the compressible Navier–Stokes equations in barotropic regime (adiabatic coefficient γ &gt; 3 / 2 , in three dimensions, γ &gt; 1 in two dimensions) with large velocity prescribed at the boundary and large density prescribed at the inflow boundary of a bounded piecewise regular Lipschitz domain, without any restriction neither on the shape of the inflow/outflow boundaries nor on the shape of the domain. It is well known that the relative energy inequality has many applications, e.g., to investigation of incompressible or inviscid limits, to the dimension reduction of flows, to the error estimates of numerical schemes. In this paper we deal with one of its basic applications, namely weak–strong uniqueness principle.</description><subject>Boundary conditions</subject><subject>Classical and Continuum Physics</subject><subject>Compressibility</subject><subject>Computational fluid dynamics</subject><subject>Domains</subject><subject>Fluid flow</subject><subject>Fluid mechanics</subject><subject>Fluid- and Aerodynamics</subject><subject>Incompressible flow</subject><subject>Inflow</subject><subject>Jet engines</subject><subject>Mathematical Methods in Physics</subject><subject>Navier-Stokes equations</subject><subject>Outflow</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Theoretical mathematics</subject><subject>Uniqueness</subject><subject>Wind tunnels</subject><issn>1422-6928</issn><issn>1422-6952</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kEFOwzAQRSMEEqVwAVaW2BKYOHbSsEOlQKWKLkrF0nIcpxiCXWwHKCvu0BtyElyCYMdqRjPv_y_9KDpM4CQByE8dAOAkBgwxAKVp_L4V9RKCcZwVFG__7niwG-059wCQ5LTAvWh9oZxTS-7Vi0Qz07ReGe2QN2honpZWhmfZSHTDX5S0nx_rmTeP0qHRc8s78lX5e3QltbS8QWNdN-Y1YNPWbzZ0wT0_Q6M35bzUQh6jmeelapRfIa4rdCf5YzhZoxdortVzG3yc2492at44efAz-9H8cnQ7vI4n06vx8HwSi5RmPqa4SCgWpKSlFISkvAIBlSScZAMBWA54kUFZCVJhnhOoq5oWosqKlAcFkDrtR0ed79KaEO08ezCt1SGSYTLICcmTnAQKd5Swxjkra7a06onbFUuAbcpnXfkslM--y2fvQZR2IhdgvZD2z_of1Rezno12</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Kwon, Young-Sam</creator><creator>Novotny, Antonin</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2021</creationdate><title>Dissipative Solutions to Compressible Navier–Stokes Equations with General Inflow–Outflow Data: Existence, Stability and Weak Strong Uniqueness</title><author>Kwon, Young-Sam ; Novotny, Antonin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-529152c4b5bec443ad0c0de4a468c02e8a960bdc4d2a740fdf59cd693ab5b04f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Boundary conditions</topic><topic>Classical and Continuum Physics</topic><topic>Compressibility</topic><topic>Computational fluid dynamics</topic><topic>Domains</topic><topic>Fluid flow</topic><topic>Fluid mechanics</topic><topic>Fluid- and Aerodynamics</topic><topic>Incompressible flow</topic><topic>Inflow</topic><topic>Jet engines</topic><topic>Mathematical Methods in Physics</topic><topic>Navier-Stokes equations</topic><topic>Outflow</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Theoretical mathematics</topic><topic>Uniqueness</topic><topic>Wind tunnels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kwon, Young-Sam</creatorcontrib><creatorcontrib>Novotny, Antonin</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of mathematical fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kwon, Young-Sam</au><au>Novotny, Antonin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dissipative Solutions to Compressible Navier–Stokes Equations with General Inflow–Outflow Data: Existence, Stability and Weak Strong Uniqueness</atitle><jtitle>Journal of mathematical fluid mechanics</jtitle><stitle>J. Math. Fluid Mech</stitle><date>2021</date><risdate>2021</risdate><volume>23</volume><issue>1</issue><artnum>23</artnum><issn>1422-6928</issn><eissn>1422-6952</eissn><abstract>So far existence of dissipative weak solutions for the compressible Navier–Stokes equations (i.e. weak solutions satisfying the relative energy inequality) is known only in the case of boundary conditions with non zero inflow/outflow (i.e., in particular, when the normal component of the velocity on the boundary of the flow domain is equal to zero). Most of physical applications (as flows in wind tunnels, pipes, reactors of jet engines) requires to consider non-zero inflow–outflow boundary condtions. We prove existence of dissipative weak solutions to the compressible Navier–Stokes equations in barotropic regime (adiabatic coefficient γ &gt; 3 / 2 , in three dimensions, γ &gt; 1 in two dimensions) with large velocity prescribed at the boundary and large density prescribed at the inflow boundary of a bounded piecewise regular Lipschitz domain, without any restriction neither on the shape of the inflow/outflow boundaries nor on the shape of the domain. It is well known that the relative energy inequality has many applications, e.g., to investigation of incompressible or inviscid limits, to the dimension reduction of flows, to the error estimates of numerical schemes. In this paper we deal with one of its basic applications, namely weak–strong uniqueness principle.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00021-020-00553-z</doi></addata></record>
fulltext fulltext
identifier ISSN: 1422-6928
ispartof Journal of mathematical fluid mechanics, 2021, Vol.23 (1), Article 23
issn 1422-6928
1422-6952
language eng
recordid cdi_proquest_journals_2487447174
source SpringerLink Journals - AutoHoldings
subjects Boundary conditions
Classical and Continuum Physics
Compressibility
Computational fluid dynamics
Domains
Fluid flow
Fluid mechanics
Fluid- and Aerodynamics
Incompressible flow
Inflow
Jet engines
Mathematical Methods in Physics
Navier-Stokes equations
Outflow
Physics
Physics and Astronomy
Theoretical mathematics
Uniqueness
Wind tunnels
title Dissipative Solutions to Compressible Navier–Stokes Equations with General Inflow–Outflow Data: Existence, Stability and Weak Strong Uniqueness
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T23%3A37%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dissipative%20Solutions%20to%20Compressible%20Navier%E2%80%93Stokes%20Equations%20with%20General%20Inflow%E2%80%93Outflow%20Data:%20Existence,%20Stability%20and%20Weak%20Strong%20Uniqueness&rft.jtitle=Journal%20of%20mathematical%20fluid%20mechanics&rft.au=Kwon,%20Young-Sam&rft.date=2021&rft.volume=23&rft.issue=1&rft.artnum=23&rft.issn=1422-6928&rft.eissn=1422-6952&rft_id=info:doi/10.1007/s00021-020-00553-z&rft_dat=%3Cproquest_cross%3E2487447174%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2487447174&rft_id=info:pmid/&rfr_iscdi=true