Mathematical Modeling of Promising Structures of Metal Oxides

Information about the structure and properties of materials is especially important when working with micro-and nanoscale objects due to the complexity of obtaining it. This makes it relevant to use computer modeling to predict the required characteristics of materials. The electronic, magnetic, mec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Russian microelectronics 2020-12, Vol.49 (8), p.590-593
1. Verfasser: Sechenykh, P. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 593
container_issue 8
container_start_page 590
container_title Russian microelectronics
container_volume 49
creator Sechenykh, P. A.
description Information about the structure and properties of materials is especially important when working with micro-and nanoscale objects due to the complexity of obtaining it. This makes it relevant to use computer modeling to predict the required characteristics of materials. The electronic, magnetic, mechanical, and other properties of crystalline substances are determined by their structure: the periodicity of the lattice and the symmetry of the unit cell. This article discusses metal oxides with the general chemical formulas MeO (metals: Ca, Cd, Mg), MeO 2 (metals: Hf, Ce, Zr), Me 2 O 3 (metals: Er, Nd, Sc, Mn, Tl), and Me 3 O 4 (using Fe as an example) and a crystal lattice with a cubic type of symmetry—structural types NaCl (rock salt), Fluorite, Bixbyite, and Spinel, respectively. The paper describes the model of ionic-atomic radii, which is widely used to model crystalline metal oxides. The application of the annealing simulation algorithm for calculating the metric parameters of the compounds under consideration is shown. The software implementation of the algorithm presented in this paper allows us to determine the coordinates of the atoms that are included in the elementary cell of the crystal lattice to calculate the lattice constant and the density of the packing of atoms in the crystal cell using the specified chemical formula and the space group symmetry. These structural characteristics can be used as the input parameters for determining the electronic, magnetic, and other properties. The article compares the values of lattice constants obtained as a result of modeling with experimental data.
doi_str_mv 10.1134/S1063739720080065
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2487447151</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2487447151</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2315-5ab380766d972ce6748638d90aea40511be274b07d0766b330fb18740ac69aec3</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouK7-AG8Fz9WZJk3agwdZ_IItK6yeS5pO1y79WJMW9N-bUsGDeJqv531nGMYuEa4RubjZIkiueKoigARAxkdsgRKSkAuMj33ux-E0P2Vnzu0B0ENywW4zPbxTq4fa6CbI-pKautsFfRW82L6t3VRsBzuaYbTkpn5Ggyc3n3VJ7pydVLpxdPETl-zt4f519RSuN4_Pq7t1aCKOcRjrgiegpCz9fYakEonkSZmCJi0gRiwoUqIAVU5QwTlUBSZKgDYy1WT4kl3Nvgfbf4zkhnzfj7bzK_NIeFAojNFTOFPG9s5ZqvKDrVttv3KEfPpS_udLXhPNGufZbkf21_l_0Tcrz2b_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2487447151</pqid></control><display><type>article</type><title>Mathematical Modeling of Promising Structures of Metal Oxides</title><source>SpringerLink (Online service)</source><creator>Sechenykh, P. A.</creator><creatorcontrib>Sechenykh, P. A.</creatorcontrib><description>Information about the structure and properties of materials is especially important when working with micro-and nanoscale objects due to the complexity of obtaining it. This makes it relevant to use computer modeling to predict the required characteristics of materials. The electronic, magnetic, mechanical, and other properties of crystalline substances are determined by their structure: the periodicity of the lattice and the symmetry of the unit cell. This article discusses metal oxides with the general chemical formulas MeO (metals: Ca, Cd, Mg), MeO 2 (metals: Hf, Ce, Zr), Me 2 O 3 (metals: Er, Nd, Sc, Mn, Tl), and Me 3 O 4 (using Fe as an example) and a crystal lattice with a cubic type of symmetry—structural types NaCl (rock salt), Fluorite, Bixbyite, and Spinel, respectively. The paper describes the model of ionic-atomic radii, which is widely used to model crystalline metal oxides. The application of the annealing simulation algorithm for calculating the metric parameters of the compounds under consideration is shown. The software implementation of the algorithm presented in this paper allows us to determine the coordinates of the atoms that are included in the elementary cell of the crystal lattice to calculate the lattice constant and the density of the packing of atoms in the crystal cell using the specified chemical formula and the space group symmetry. These structural characteristics can be used as the input parameters for determining the electronic, magnetic, and other properties. The article compares the values of lattice constants obtained as a result of modeling with experimental data.</description><identifier>ISSN: 1063-7397</identifier><identifier>EISSN: 1608-3415</identifier><identifier>DOI: 10.1134/S1063739720080065</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Algorithms ; Atomic radius ; Calcium ; Crystal lattices ; Crystal structure ; Crystallinity ; Cubic lattice ; Electrical Engineering ; Engineering ; Erbium ; Fluorite ; Formulas (mathematics) ; Iron ; Lattice parameters ; Magnesium ; Magnetic properties ; Manganese ; Material properties ; Mathematical models ; Metal oxides ; Metals ; Neodymium ; Symmetry ; Unit cell ; Zirconium</subject><ispartof>Russian microelectronics, 2020-12, Vol.49 (8), p.590-593</ispartof><rights>Pleiades Publishing, Ltd. 2020. ISSN 1063-7397, Russian Microelectronics, 2020, Vol. 49, No. 8, pp. 590–593. © Pleiades Publishing, Ltd., 2020. Russian Text © The Author(s), 2019, published in Izvestiya Vysshikh Uchebnykh Zavedenii, Materialy Elektronnoi Tekhniki, 2019, Vol. 22, No. 4, pp. 268–271.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2315-5ab380766d972ce6748638d90aea40511be274b07d0766b330fb18740ac69aec3</citedby><cites>FETCH-LOGICAL-c2315-5ab380766d972ce6748638d90aea40511be274b07d0766b330fb18740ac69aec3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1063739720080065$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1063739720080065$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Sechenykh, P. A.</creatorcontrib><title>Mathematical Modeling of Promising Structures of Metal Oxides</title><title>Russian microelectronics</title><addtitle>Russ Microelectron</addtitle><description>Information about the structure and properties of materials is especially important when working with micro-and nanoscale objects due to the complexity of obtaining it. This makes it relevant to use computer modeling to predict the required characteristics of materials. The electronic, magnetic, mechanical, and other properties of crystalline substances are determined by their structure: the periodicity of the lattice and the symmetry of the unit cell. This article discusses metal oxides with the general chemical formulas MeO (metals: Ca, Cd, Mg), MeO 2 (metals: Hf, Ce, Zr), Me 2 O 3 (metals: Er, Nd, Sc, Mn, Tl), and Me 3 O 4 (using Fe as an example) and a crystal lattice with a cubic type of symmetry—structural types NaCl (rock salt), Fluorite, Bixbyite, and Spinel, respectively. The paper describes the model of ionic-atomic radii, which is widely used to model crystalline metal oxides. The application of the annealing simulation algorithm for calculating the metric parameters of the compounds under consideration is shown. The software implementation of the algorithm presented in this paper allows us to determine the coordinates of the atoms that are included in the elementary cell of the crystal lattice to calculate the lattice constant and the density of the packing of atoms in the crystal cell using the specified chemical formula and the space group symmetry. These structural characteristics can be used as the input parameters for determining the electronic, magnetic, and other properties. The article compares the values of lattice constants obtained as a result of modeling with experimental data.</description><subject>Algorithms</subject><subject>Atomic radius</subject><subject>Calcium</subject><subject>Crystal lattices</subject><subject>Crystal structure</subject><subject>Crystallinity</subject><subject>Cubic lattice</subject><subject>Electrical Engineering</subject><subject>Engineering</subject><subject>Erbium</subject><subject>Fluorite</subject><subject>Formulas (mathematics)</subject><subject>Iron</subject><subject>Lattice parameters</subject><subject>Magnesium</subject><subject>Magnetic properties</subject><subject>Manganese</subject><subject>Material properties</subject><subject>Mathematical models</subject><subject>Metal oxides</subject><subject>Metals</subject><subject>Neodymium</subject><subject>Symmetry</subject><subject>Unit cell</subject><subject>Zirconium</subject><issn>1063-7397</issn><issn>1608-3415</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LxDAQhoMouK7-AG8Fz9WZJk3agwdZ_IItK6yeS5pO1y79WJMW9N-bUsGDeJqv531nGMYuEa4RubjZIkiueKoigARAxkdsgRKSkAuMj33ux-E0P2Vnzu0B0ENywW4zPbxTq4fa6CbI-pKautsFfRW82L6t3VRsBzuaYbTkpn5Ggyc3n3VJ7pydVLpxdPETl-zt4f519RSuN4_Pq7t1aCKOcRjrgiegpCz9fYakEonkSZmCJi0gRiwoUqIAVU5QwTlUBSZKgDYy1WT4kl3Nvgfbf4zkhnzfj7bzK_NIeFAojNFTOFPG9s5ZqvKDrVttv3KEfPpS_udLXhPNGufZbkf21_l_0Tcrz2b_</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Sechenykh, P. A.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20201201</creationdate><title>Mathematical Modeling of Promising Structures of Metal Oxides</title><author>Sechenykh, P. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2315-5ab380766d972ce6748638d90aea40511be274b07d0766b330fb18740ac69aec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Atomic radius</topic><topic>Calcium</topic><topic>Crystal lattices</topic><topic>Crystal structure</topic><topic>Crystallinity</topic><topic>Cubic lattice</topic><topic>Electrical Engineering</topic><topic>Engineering</topic><topic>Erbium</topic><topic>Fluorite</topic><topic>Formulas (mathematics)</topic><topic>Iron</topic><topic>Lattice parameters</topic><topic>Magnesium</topic><topic>Magnetic properties</topic><topic>Manganese</topic><topic>Material properties</topic><topic>Mathematical models</topic><topic>Metal oxides</topic><topic>Metals</topic><topic>Neodymium</topic><topic>Symmetry</topic><topic>Unit cell</topic><topic>Zirconium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sechenykh, P. A.</creatorcontrib><collection>CrossRef</collection><jtitle>Russian microelectronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sechenykh, P. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mathematical Modeling of Promising Structures of Metal Oxides</atitle><jtitle>Russian microelectronics</jtitle><stitle>Russ Microelectron</stitle><date>2020-12-01</date><risdate>2020</risdate><volume>49</volume><issue>8</issue><spage>590</spage><epage>593</epage><pages>590-593</pages><issn>1063-7397</issn><eissn>1608-3415</eissn><abstract>Information about the structure and properties of materials is especially important when working with micro-and nanoscale objects due to the complexity of obtaining it. This makes it relevant to use computer modeling to predict the required characteristics of materials. The electronic, magnetic, mechanical, and other properties of crystalline substances are determined by their structure: the periodicity of the lattice and the symmetry of the unit cell. This article discusses metal oxides with the general chemical formulas MeO (metals: Ca, Cd, Mg), MeO 2 (metals: Hf, Ce, Zr), Me 2 O 3 (metals: Er, Nd, Sc, Mn, Tl), and Me 3 O 4 (using Fe as an example) and a crystal lattice with a cubic type of symmetry—structural types NaCl (rock salt), Fluorite, Bixbyite, and Spinel, respectively. The paper describes the model of ionic-atomic radii, which is widely used to model crystalline metal oxides. The application of the annealing simulation algorithm for calculating the metric parameters of the compounds under consideration is shown. The software implementation of the algorithm presented in this paper allows us to determine the coordinates of the atoms that are included in the elementary cell of the crystal lattice to calculate the lattice constant and the density of the packing of atoms in the crystal cell using the specified chemical formula and the space group symmetry. These structural characteristics can be used as the input parameters for determining the electronic, magnetic, and other properties. The article compares the values of lattice constants obtained as a result of modeling with experimental data.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1063739720080065</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1063-7397
ispartof Russian microelectronics, 2020-12, Vol.49 (8), p.590-593
issn 1063-7397
1608-3415
language eng
recordid cdi_proquest_journals_2487447151
source SpringerLink (Online service)
subjects Algorithms
Atomic radius
Calcium
Crystal lattices
Crystal structure
Crystallinity
Cubic lattice
Electrical Engineering
Engineering
Erbium
Fluorite
Formulas (mathematics)
Iron
Lattice parameters
Magnesium
Magnetic properties
Manganese
Material properties
Mathematical models
Metal oxides
Metals
Neodymium
Symmetry
Unit cell
Zirconium
title Mathematical Modeling of Promising Structures of Metal Oxides
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T15%3A58%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mathematical%20Modeling%20of%20Promising%20Structures%20of%20Metal%20Oxides&rft.jtitle=Russian%20microelectronics&rft.au=Sechenykh,%20P.%20A.&rft.date=2020-12-01&rft.volume=49&rft.issue=8&rft.spage=590&rft.epage=593&rft.pages=590-593&rft.issn=1063-7397&rft.eissn=1608-3415&rft_id=info:doi/10.1134/S1063739720080065&rft_dat=%3Cproquest_cross%3E2487447151%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2487447151&rft_id=info:pmid/&rfr_iscdi=true