Mathematical Modeling of Promising Structures of Metal Oxides
Information about the structure and properties of materials is especially important when working with micro-and nanoscale objects due to the complexity of obtaining it. This makes it relevant to use computer modeling to predict the required characteristics of materials. The electronic, magnetic, mec...
Gespeichert in:
Veröffentlicht in: | Russian microelectronics 2020-12, Vol.49 (8), p.590-593 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 593 |
---|---|
container_issue | 8 |
container_start_page | 590 |
container_title | Russian microelectronics |
container_volume | 49 |
creator | Sechenykh, P. A. |
description | Information about the structure and properties of materials is especially important when working with micro-and nanoscale objects due to the complexity of obtaining it. This makes it relevant to use computer modeling to predict the required characteristics of materials. The electronic, magnetic, mechanical, and other properties of crystalline substances are determined by their structure: the periodicity of the lattice and the symmetry of the unit cell. This article discusses metal oxides with the general chemical formulas MeO (metals: Ca, Cd, Mg), MeO
2
(metals: Hf, Ce, Zr), Me
2
O
3
(metals: Er, Nd, Sc, Mn, Tl), and Me
3
O
4
(using Fe as an example) and a crystal lattice with a cubic type of symmetry—structural types NaCl (rock salt), Fluorite, Bixbyite, and Spinel, respectively. The paper describes the model of ionic-atomic radii, which is widely used to model crystalline metal oxides. The application of the annealing simulation algorithm for calculating the metric parameters of the compounds under consideration is shown. The software implementation of the algorithm presented in this paper allows us to determine the coordinates of the atoms that are included in the elementary cell of the crystal lattice to calculate the lattice constant and the density of the packing of atoms in the crystal cell using the specified chemical formula and the space group symmetry. These structural characteristics can be used as the input parameters for determining the electronic, magnetic, and other properties. The article compares the values of lattice constants obtained as a result of modeling with experimental data. |
doi_str_mv | 10.1134/S1063739720080065 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2487447151</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2487447151</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2315-5ab380766d972ce6748638d90aea40511be274b07d0766b330fb18740ac69aec3</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouK7-AG8Fz9WZJk3agwdZ_IItK6yeS5pO1y79WJMW9N-bUsGDeJqv531nGMYuEa4RubjZIkiueKoigARAxkdsgRKSkAuMj33ux-E0P2Vnzu0B0ENywW4zPbxTq4fa6CbI-pKautsFfRW82L6t3VRsBzuaYbTkpn5Ggyc3n3VJ7pydVLpxdPETl-zt4f519RSuN4_Pq7t1aCKOcRjrgiegpCz9fYakEonkSZmCJi0gRiwoUqIAVU5QwTlUBSZKgDYy1WT4kl3Nvgfbf4zkhnzfj7bzK_NIeFAojNFTOFPG9s5ZqvKDrVttv3KEfPpS_udLXhPNGufZbkf21_l_0Tcrz2b_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2487447151</pqid></control><display><type>article</type><title>Mathematical Modeling of Promising Structures of Metal Oxides</title><source>SpringerLink (Online service)</source><creator>Sechenykh, P. A.</creator><creatorcontrib>Sechenykh, P. A.</creatorcontrib><description>Information about the structure and properties of materials is especially important when working with micro-and nanoscale objects due to the complexity of obtaining it. This makes it relevant to use computer modeling to predict the required characteristics of materials. The electronic, magnetic, mechanical, and other properties of crystalline substances are determined by their structure: the periodicity of the lattice and the symmetry of the unit cell. This article discusses metal oxides with the general chemical formulas MeO (metals: Ca, Cd, Mg), MeO
2
(metals: Hf, Ce, Zr), Me
2
O
3
(metals: Er, Nd, Sc, Mn, Tl), and Me
3
O
4
(using Fe as an example) and a crystal lattice with a cubic type of symmetry—structural types NaCl (rock salt), Fluorite, Bixbyite, and Spinel, respectively. The paper describes the model of ionic-atomic radii, which is widely used to model crystalline metal oxides. The application of the annealing simulation algorithm for calculating the metric parameters of the compounds under consideration is shown. The software implementation of the algorithm presented in this paper allows us to determine the coordinates of the atoms that are included in the elementary cell of the crystal lattice to calculate the lattice constant and the density of the packing of atoms in the crystal cell using the specified chemical formula and the space group symmetry. These structural characteristics can be used as the input parameters for determining the electronic, magnetic, and other properties. The article compares the values of lattice constants obtained as a result of modeling with experimental data.</description><identifier>ISSN: 1063-7397</identifier><identifier>EISSN: 1608-3415</identifier><identifier>DOI: 10.1134/S1063739720080065</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Algorithms ; Atomic radius ; Calcium ; Crystal lattices ; Crystal structure ; Crystallinity ; Cubic lattice ; Electrical Engineering ; Engineering ; Erbium ; Fluorite ; Formulas (mathematics) ; Iron ; Lattice parameters ; Magnesium ; Magnetic properties ; Manganese ; Material properties ; Mathematical models ; Metal oxides ; Metals ; Neodymium ; Symmetry ; Unit cell ; Zirconium</subject><ispartof>Russian microelectronics, 2020-12, Vol.49 (8), p.590-593</ispartof><rights>Pleiades Publishing, Ltd. 2020. ISSN 1063-7397, Russian Microelectronics, 2020, Vol. 49, No. 8, pp. 590–593. © Pleiades Publishing, Ltd., 2020. Russian Text © The Author(s), 2019, published in Izvestiya Vysshikh Uchebnykh Zavedenii, Materialy Elektronnoi Tekhniki, 2019, Vol. 22, No. 4, pp. 268–271.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2315-5ab380766d972ce6748638d90aea40511be274b07d0766b330fb18740ac69aec3</citedby><cites>FETCH-LOGICAL-c2315-5ab380766d972ce6748638d90aea40511be274b07d0766b330fb18740ac69aec3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1063739720080065$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1063739720080065$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Sechenykh, P. A.</creatorcontrib><title>Mathematical Modeling of Promising Structures of Metal Oxides</title><title>Russian microelectronics</title><addtitle>Russ Microelectron</addtitle><description>Information about the structure and properties of materials is especially important when working with micro-and nanoscale objects due to the complexity of obtaining it. This makes it relevant to use computer modeling to predict the required characteristics of materials. The electronic, magnetic, mechanical, and other properties of crystalline substances are determined by their structure: the periodicity of the lattice and the symmetry of the unit cell. This article discusses metal oxides with the general chemical formulas MeO (metals: Ca, Cd, Mg), MeO
2
(metals: Hf, Ce, Zr), Me
2
O
3
(metals: Er, Nd, Sc, Mn, Tl), and Me
3
O
4
(using Fe as an example) and a crystal lattice with a cubic type of symmetry—structural types NaCl (rock salt), Fluorite, Bixbyite, and Spinel, respectively. The paper describes the model of ionic-atomic radii, which is widely used to model crystalline metal oxides. The application of the annealing simulation algorithm for calculating the metric parameters of the compounds under consideration is shown. The software implementation of the algorithm presented in this paper allows us to determine the coordinates of the atoms that are included in the elementary cell of the crystal lattice to calculate the lattice constant and the density of the packing of atoms in the crystal cell using the specified chemical formula and the space group symmetry. These structural characteristics can be used as the input parameters for determining the electronic, magnetic, and other properties. The article compares the values of lattice constants obtained as a result of modeling with experimental data.</description><subject>Algorithms</subject><subject>Atomic radius</subject><subject>Calcium</subject><subject>Crystal lattices</subject><subject>Crystal structure</subject><subject>Crystallinity</subject><subject>Cubic lattice</subject><subject>Electrical Engineering</subject><subject>Engineering</subject><subject>Erbium</subject><subject>Fluorite</subject><subject>Formulas (mathematics)</subject><subject>Iron</subject><subject>Lattice parameters</subject><subject>Magnesium</subject><subject>Magnetic properties</subject><subject>Manganese</subject><subject>Material properties</subject><subject>Mathematical models</subject><subject>Metal oxides</subject><subject>Metals</subject><subject>Neodymium</subject><subject>Symmetry</subject><subject>Unit cell</subject><subject>Zirconium</subject><issn>1063-7397</issn><issn>1608-3415</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LxDAQhoMouK7-AG8Fz9WZJk3agwdZ_IItK6yeS5pO1y79WJMW9N-bUsGDeJqv531nGMYuEa4RubjZIkiueKoigARAxkdsgRKSkAuMj33ux-E0P2Vnzu0B0ENywW4zPbxTq4fa6CbI-pKautsFfRW82L6t3VRsBzuaYbTkpn5Ggyc3n3VJ7pydVLpxdPETl-zt4f519RSuN4_Pq7t1aCKOcRjrgiegpCz9fYakEonkSZmCJi0gRiwoUqIAVU5QwTlUBSZKgDYy1WT4kl3Nvgfbf4zkhnzfj7bzK_NIeFAojNFTOFPG9s5ZqvKDrVttv3KEfPpS_udLXhPNGufZbkf21_l_0Tcrz2b_</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Sechenykh, P. A.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20201201</creationdate><title>Mathematical Modeling of Promising Structures of Metal Oxides</title><author>Sechenykh, P. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2315-5ab380766d972ce6748638d90aea40511be274b07d0766b330fb18740ac69aec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Atomic radius</topic><topic>Calcium</topic><topic>Crystal lattices</topic><topic>Crystal structure</topic><topic>Crystallinity</topic><topic>Cubic lattice</topic><topic>Electrical Engineering</topic><topic>Engineering</topic><topic>Erbium</topic><topic>Fluorite</topic><topic>Formulas (mathematics)</topic><topic>Iron</topic><topic>Lattice parameters</topic><topic>Magnesium</topic><topic>Magnetic properties</topic><topic>Manganese</topic><topic>Material properties</topic><topic>Mathematical models</topic><topic>Metal oxides</topic><topic>Metals</topic><topic>Neodymium</topic><topic>Symmetry</topic><topic>Unit cell</topic><topic>Zirconium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sechenykh, P. A.</creatorcontrib><collection>CrossRef</collection><jtitle>Russian microelectronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sechenykh, P. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mathematical Modeling of Promising Structures of Metal Oxides</atitle><jtitle>Russian microelectronics</jtitle><stitle>Russ Microelectron</stitle><date>2020-12-01</date><risdate>2020</risdate><volume>49</volume><issue>8</issue><spage>590</spage><epage>593</epage><pages>590-593</pages><issn>1063-7397</issn><eissn>1608-3415</eissn><abstract>Information about the structure and properties of materials is especially important when working with micro-and nanoscale objects due to the complexity of obtaining it. This makes it relevant to use computer modeling to predict the required characteristics of materials. The electronic, magnetic, mechanical, and other properties of crystalline substances are determined by their structure: the periodicity of the lattice and the symmetry of the unit cell. This article discusses metal oxides with the general chemical formulas MeO (metals: Ca, Cd, Mg), MeO
2
(metals: Hf, Ce, Zr), Me
2
O
3
(metals: Er, Nd, Sc, Mn, Tl), and Me
3
O
4
(using Fe as an example) and a crystal lattice with a cubic type of symmetry—structural types NaCl (rock salt), Fluorite, Bixbyite, and Spinel, respectively. The paper describes the model of ionic-atomic radii, which is widely used to model crystalline metal oxides. The application of the annealing simulation algorithm for calculating the metric parameters of the compounds under consideration is shown. The software implementation of the algorithm presented in this paper allows us to determine the coordinates of the atoms that are included in the elementary cell of the crystal lattice to calculate the lattice constant and the density of the packing of atoms in the crystal cell using the specified chemical formula and the space group symmetry. These structural characteristics can be used as the input parameters for determining the electronic, magnetic, and other properties. The article compares the values of lattice constants obtained as a result of modeling with experimental data.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1063739720080065</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1063-7397 |
ispartof | Russian microelectronics, 2020-12, Vol.49 (8), p.590-593 |
issn | 1063-7397 1608-3415 |
language | eng |
recordid | cdi_proquest_journals_2487447151 |
source | SpringerLink (Online service) |
subjects | Algorithms Atomic radius Calcium Crystal lattices Crystal structure Crystallinity Cubic lattice Electrical Engineering Engineering Erbium Fluorite Formulas (mathematics) Iron Lattice parameters Magnesium Magnetic properties Manganese Material properties Mathematical models Metal oxides Metals Neodymium Symmetry Unit cell Zirconium |
title | Mathematical Modeling of Promising Structures of Metal Oxides |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T15%3A58%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mathematical%20Modeling%20of%20Promising%20Structures%20of%20Metal%20Oxides&rft.jtitle=Russian%20microelectronics&rft.au=Sechenykh,%20P.%20A.&rft.date=2020-12-01&rft.volume=49&rft.issue=8&rft.spage=590&rft.epage=593&rft.pages=590-593&rft.issn=1063-7397&rft.eissn=1608-3415&rft_id=info:doi/10.1134/S1063739720080065&rft_dat=%3Cproquest_cross%3E2487447151%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2487447151&rft_id=info:pmid/&rfr_iscdi=true |