Design of Transmultiplexer Filter Banks Using Ramanujan Sums

Ramanujan sums are sequences introduced by the famous mathematician S. Ramanujan in 1918. Ramanujan sum c q ( n ) is the sequence in n with periodicity q . Many arithmetic functions such as Euler’s totient function and Riemann zeta function can be expressed using these sequences. These sums have man...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:National Academy science letters 2021-02, Vol.44 (1), p.33-38
Hauptverfasser: Abraham, Deepa, Manuel, Manju
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 38
container_issue 1
container_start_page 33
container_title National Academy science letters
container_volume 44
creator Abraham, Deepa
Manuel, Manju
description Ramanujan sums are sequences introduced by the famous mathematician S. Ramanujan in 1918. Ramanujan sum c q ( n ) is the sequence in n with periodicity q . Many arithmetic functions such as Euler’s totient function and Riemann zeta function can be expressed using these sequences. These sums have many attractive properties which make them suitable for signal processing domain. Ramanujan sums are orthogonal and symmetric. Implementation of Ramanujan sum-based transforms is faster compared to discrete Fourier transform, since their computation involves only co-resonant frequencies. These transforms are particularly useful in identifying periodicities in signals. Ramanujan sums are integer valued. In this letter, it is proposed to use Ramanujan sums for the design of transmultiplexer filter banks. Here, the analysis and synthesis filter coefficients are integers. Computation time is reduced considerably by replacing floating point arithmetic with integer coefficients. Rounding errors in hardware implementation are avoided, and perfect reconstruction condition in the transmultiplexer system is ensured by using these integer coefficients.
doi_str_mv 10.1007/s40009-020-00943-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2487446950</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2487446950</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-f32a705bcd1661e0d8046e88528ca28b2ad3dd554d1c59e6cb0c96f4f4e59ea93</originalsourceid><addsrcrecordid>eNp9kNFKwzAUhoMoOOZewKuC19GTNElb8EanU0EQdAPvQpamo7NNZ04L8-3NrOCdV_858P3nwEfIOYNLBpBdoQCAggIHGlOkdH9EJpxLoCyT4phM4DBLwd5PyQxxG2mQSkrGJ-T6zmG98UlXJctgPLZD09e7xu1dSBZ108e4Nf4DkxXWfpO8mtb4YWt88ja0eEZOKtOgm_3mlKwW98v5I31-eXia3zxTm7Kip1XKTQZybUumFHNQ5iCUy3PJc2t4vuamTMtSSlEyKwun7BpsoSpRCRdXU6RTcjHe3YXuc3DY6203BB9fai7yTAhVSIgUHykbOsTgKr0LdWvCl2agD6L0KEpHUfpHlN7HUjqWMMJ-48Lf6X9a3y9kaxU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2487446950</pqid></control><display><type>article</type><title>Design of Transmultiplexer Filter Banks Using Ramanujan Sums</title><source>SpringerLink Journals</source><creator>Abraham, Deepa ; Manuel, Manju</creator><creatorcontrib>Abraham, Deepa ; Manuel, Manju</creatorcontrib><description>Ramanujan sums are sequences introduced by the famous mathematician S. Ramanujan in 1918. Ramanujan sum c q ( n ) is the sequence in n with periodicity q . Many arithmetic functions such as Euler’s totient function and Riemann zeta function can be expressed using these sequences. These sums have many attractive properties which make them suitable for signal processing domain. Ramanujan sums are orthogonal and symmetric. Implementation of Ramanujan sum-based transforms is faster compared to discrete Fourier transform, since their computation involves only co-resonant frequencies. These transforms are particularly useful in identifying periodicities in signals. Ramanujan sums are integer valued. In this letter, it is proposed to use Ramanujan sums for the design of transmultiplexer filter banks. Here, the analysis and synthesis filter coefficients are integers. Computation time is reduced considerably by replacing floating point arithmetic with integer coefficients. Rounding errors in hardware implementation are avoided, and perfect reconstruction condition in the transmultiplexer system is ensured by using these integer coefficients.</description><identifier>ISSN: 0250-541X</identifier><identifier>EISSN: 2250-1754</identifier><identifier>DOI: 10.1007/s40009-020-00943-x</identifier><language>eng</language><publisher>New Delhi: Springer India</publisher><subject>Coefficients ; Computation ; Filter banks ; Floating point arithmetic ; Fourier analysis ; Fourier transforms ; History of Science ; Humanities and Social Sciences ; Integers ; Mathematical analysis ; Mathematical functions ; Mathematics ; multidisciplinary ; Periodicity ; Resonant frequencies ; Rounding ; Science ; Science (multidisciplinary) ; Sequences ; Short Communication ; Signal processing ; Sums</subject><ispartof>National Academy science letters, 2021-02, Vol.44 (1), p.33-38</ispartof><rights>The National Academy of Sciences, India 2020</rights><rights>The National Academy of Sciences, India 2020.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-f32a705bcd1661e0d8046e88528ca28b2ad3dd554d1c59e6cb0c96f4f4e59ea93</citedby><cites>FETCH-LOGICAL-c319t-f32a705bcd1661e0d8046e88528ca28b2ad3dd554d1c59e6cb0c96f4f4e59ea93</cites><orcidid>0000-0003-3147-632X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40009-020-00943-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40009-020-00943-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Abraham, Deepa</creatorcontrib><creatorcontrib>Manuel, Manju</creatorcontrib><title>Design of Transmultiplexer Filter Banks Using Ramanujan Sums</title><title>National Academy science letters</title><addtitle>Natl. Acad. Sci. Lett</addtitle><description>Ramanujan sums are sequences introduced by the famous mathematician S. Ramanujan in 1918. Ramanujan sum c q ( n ) is the sequence in n with periodicity q . Many arithmetic functions such as Euler’s totient function and Riemann zeta function can be expressed using these sequences. These sums have many attractive properties which make them suitable for signal processing domain. Ramanujan sums are orthogonal and symmetric. Implementation of Ramanujan sum-based transforms is faster compared to discrete Fourier transform, since their computation involves only co-resonant frequencies. These transforms are particularly useful in identifying periodicities in signals. Ramanujan sums are integer valued. In this letter, it is proposed to use Ramanujan sums for the design of transmultiplexer filter banks. Here, the analysis and synthesis filter coefficients are integers. Computation time is reduced considerably by replacing floating point arithmetic with integer coefficients. Rounding errors in hardware implementation are avoided, and perfect reconstruction condition in the transmultiplexer system is ensured by using these integer coefficients.</description><subject>Coefficients</subject><subject>Computation</subject><subject>Filter banks</subject><subject>Floating point arithmetic</subject><subject>Fourier analysis</subject><subject>Fourier transforms</subject><subject>History of Science</subject><subject>Humanities and Social Sciences</subject><subject>Integers</subject><subject>Mathematical analysis</subject><subject>Mathematical functions</subject><subject>Mathematics</subject><subject>multidisciplinary</subject><subject>Periodicity</subject><subject>Resonant frequencies</subject><subject>Rounding</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Sequences</subject><subject>Short Communication</subject><subject>Signal processing</subject><subject>Sums</subject><issn>0250-541X</issn><issn>2250-1754</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kNFKwzAUhoMoOOZewKuC19GTNElb8EanU0EQdAPvQpamo7NNZ04L8-3NrOCdV_858P3nwEfIOYNLBpBdoQCAggIHGlOkdH9EJpxLoCyT4phM4DBLwd5PyQxxG2mQSkrGJ-T6zmG98UlXJctgPLZD09e7xu1dSBZ108e4Nf4DkxXWfpO8mtb4YWt88ja0eEZOKtOgm_3mlKwW98v5I31-eXia3zxTm7Kip1XKTQZybUumFHNQ5iCUy3PJc2t4vuamTMtSSlEyKwun7BpsoSpRCRdXU6RTcjHe3YXuc3DY6203BB9fai7yTAhVSIgUHykbOsTgKr0LdWvCl2agD6L0KEpHUfpHlN7HUjqWMMJ-48Lf6X9a3y9kaxU</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Abraham, Deepa</creator><creator>Manuel, Manju</creator><general>Springer India</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-3147-632X</orcidid></search><sort><creationdate>20210201</creationdate><title>Design of Transmultiplexer Filter Banks Using Ramanujan Sums</title><author>Abraham, Deepa ; Manuel, Manju</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-f32a705bcd1661e0d8046e88528ca28b2ad3dd554d1c59e6cb0c96f4f4e59ea93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Coefficients</topic><topic>Computation</topic><topic>Filter banks</topic><topic>Floating point arithmetic</topic><topic>Fourier analysis</topic><topic>Fourier transforms</topic><topic>History of Science</topic><topic>Humanities and Social Sciences</topic><topic>Integers</topic><topic>Mathematical analysis</topic><topic>Mathematical functions</topic><topic>Mathematics</topic><topic>multidisciplinary</topic><topic>Periodicity</topic><topic>Resonant frequencies</topic><topic>Rounding</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Sequences</topic><topic>Short Communication</topic><topic>Signal processing</topic><topic>Sums</topic><toplevel>online_resources</toplevel><creatorcontrib>Abraham, Deepa</creatorcontrib><creatorcontrib>Manuel, Manju</creatorcontrib><collection>CrossRef</collection><jtitle>National Academy science letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abraham, Deepa</au><au>Manuel, Manju</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design of Transmultiplexer Filter Banks Using Ramanujan Sums</atitle><jtitle>National Academy science letters</jtitle><stitle>Natl. Acad. Sci. Lett</stitle><date>2021-02-01</date><risdate>2021</risdate><volume>44</volume><issue>1</issue><spage>33</spage><epage>38</epage><pages>33-38</pages><issn>0250-541X</issn><eissn>2250-1754</eissn><abstract>Ramanujan sums are sequences introduced by the famous mathematician S. Ramanujan in 1918. Ramanujan sum c q ( n ) is the sequence in n with periodicity q . Many arithmetic functions such as Euler’s totient function and Riemann zeta function can be expressed using these sequences. These sums have many attractive properties which make them suitable for signal processing domain. Ramanujan sums are orthogonal and symmetric. Implementation of Ramanujan sum-based transforms is faster compared to discrete Fourier transform, since their computation involves only co-resonant frequencies. These transforms are particularly useful in identifying periodicities in signals. Ramanujan sums are integer valued. In this letter, it is proposed to use Ramanujan sums for the design of transmultiplexer filter banks. Here, the analysis and synthesis filter coefficients are integers. Computation time is reduced considerably by replacing floating point arithmetic with integer coefficients. Rounding errors in hardware implementation are avoided, and perfect reconstruction condition in the transmultiplexer system is ensured by using these integer coefficients.</abstract><cop>New Delhi</cop><pub>Springer India</pub><doi>10.1007/s40009-020-00943-x</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-3147-632X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0250-541X
ispartof National Academy science letters, 2021-02, Vol.44 (1), p.33-38
issn 0250-541X
2250-1754
language eng
recordid cdi_proquest_journals_2487446950
source SpringerLink Journals
subjects Coefficients
Computation
Filter banks
Floating point arithmetic
Fourier analysis
Fourier transforms
History of Science
Humanities and Social Sciences
Integers
Mathematical analysis
Mathematical functions
Mathematics
multidisciplinary
Periodicity
Resonant frequencies
Rounding
Science
Science (multidisciplinary)
Sequences
Short Communication
Signal processing
Sums
title Design of Transmultiplexer Filter Banks Using Ramanujan Sums
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T03%3A26%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20of%20Transmultiplexer%20Filter%20Banks%20Using%20Ramanujan%20Sums&rft.jtitle=National%20Academy%20science%20letters&rft.au=Abraham,%20Deepa&rft.date=2021-02-01&rft.volume=44&rft.issue=1&rft.spage=33&rft.epage=38&rft.pages=33-38&rft.issn=0250-541X&rft.eissn=2250-1754&rft_id=info:doi/10.1007/s40009-020-00943-x&rft_dat=%3Cproquest_cross%3E2487446950%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2487446950&rft_id=info:pmid/&rfr_iscdi=true