Design of Transmultiplexer Filter Banks Using Ramanujan Sums
Ramanujan sums are sequences introduced by the famous mathematician S. Ramanujan in 1918. Ramanujan sum c q ( n ) is the sequence in n with periodicity q . Many arithmetic functions such as Euler’s totient function and Riemann zeta function can be expressed using these sequences. These sums have man...
Gespeichert in:
Veröffentlicht in: | National Academy science letters 2021-02, Vol.44 (1), p.33-38 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 38 |
---|---|
container_issue | 1 |
container_start_page | 33 |
container_title | National Academy science letters |
container_volume | 44 |
creator | Abraham, Deepa Manuel, Manju |
description | Ramanujan sums are sequences introduced by the famous mathematician S. Ramanujan in 1918. Ramanujan sum
c
q
(
n
)
is the sequence in
n
with periodicity
q
. Many arithmetic functions such as Euler’s totient function and Riemann zeta function can be expressed using these sequences. These sums have many attractive properties which make them suitable for signal processing domain. Ramanujan sums are orthogonal and symmetric. Implementation of Ramanujan sum-based transforms is faster compared to discrete Fourier transform, since their computation involves only co-resonant frequencies. These transforms are particularly useful in identifying periodicities in signals. Ramanujan sums are integer valued. In this letter, it is proposed to use Ramanujan sums for the design of transmultiplexer filter banks. Here, the analysis and synthesis filter coefficients are integers. Computation time is reduced considerably by replacing floating point arithmetic with integer coefficients. Rounding errors in hardware implementation are avoided, and perfect reconstruction condition in the transmultiplexer system is ensured by using these integer coefficients. |
doi_str_mv | 10.1007/s40009-020-00943-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2487446950</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2487446950</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-f32a705bcd1661e0d8046e88528ca28b2ad3dd554d1c59e6cb0c96f4f4e59ea93</originalsourceid><addsrcrecordid>eNp9kNFKwzAUhoMoOOZewKuC19GTNElb8EanU0EQdAPvQpamo7NNZ04L8-3NrOCdV_858P3nwEfIOYNLBpBdoQCAggIHGlOkdH9EJpxLoCyT4phM4DBLwd5PyQxxG2mQSkrGJ-T6zmG98UlXJctgPLZD09e7xu1dSBZ108e4Nf4DkxXWfpO8mtb4YWt88ja0eEZOKtOgm_3mlKwW98v5I31-eXia3zxTm7Kip1XKTQZybUumFHNQ5iCUy3PJc2t4vuamTMtSSlEyKwun7BpsoSpRCRdXU6RTcjHe3YXuc3DY6203BB9fai7yTAhVSIgUHykbOsTgKr0LdWvCl2agD6L0KEpHUfpHlN7HUjqWMMJ-48Lf6X9a3y9kaxU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2487446950</pqid></control><display><type>article</type><title>Design of Transmultiplexer Filter Banks Using Ramanujan Sums</title><source>SpringerLink Journals</source><creator>Abraham, Deepa ; Manuel, Manju</creator><creatorcontrib>Abraham, Deepa ; Manuel, Manju</creatorcontrib><description>Ramanujan sums are sequences introduced by the famous mathematician S. Ramanujan in 1918. Ramanujan sum
c
q
(
n
)
is the sequence in
n
with periodicity
q
. Many arithmetic functions such as Euler’s totient function and Riemann zeta function can be expressed using these sequences. These sums have many attractive properties which make them suitable for signal processing domain. Ramanujan sums are orthogonal and symmetric. Implementation of Ramanujan sum-based transforms is faster compared to discrete Fourier transform, since their computation involves only co-resonant frequencies. These transforms are particularly useful in identifying periodicities in signals. Ramanujan sums are integer valued. In this letter, it is proposed to use Ramanujan sums for the design of transmultiplexer filter banks. Here, the analysis and synthesis filter coefficients are integers. Computation time is reduced considerably by replacing floating point arithmetic with integer coefficients. Rounding errors in hardware implementation are avoided, and perfect reconstruction condition in the transmultiplexer system is ensured by using these integer coefficients.</description><identifier>ISSN: 0250-541X</identifier><identifier>EISSN: 2250-1754</identifier><identifier>DOI: 10.1007/s40009-020-00943-x</identifier><language>eng</language><publisher>New Delhi: Springer India</publisher><subject>Coefficients ; Computation ; Filter banks ; Floating point arithmetic ; Fourier analysis ; Fourier transforms ; History of Science ; Humanities and Social Sciences ; Integers ; Mathematical analysis ; Mathematical functions ; Mathematics ; multidisciplinary ; Periodicity ; Resonant frequencies ; Rounding ; Science ; Science (multidisciplinary) ; Sequences ; Short Communication ; Signal processing ; Sums</subject><ispartof>National Academy science letters, 2021-02, Vol.44 (1), p.33-38</ispartof><rights>The National Academy of Sciences, India 2020</rights><rights>The National Academy of Sciences, India 2020.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-f32a705bcd1661e0d8046e88528ca28b2ad3dd554d1c59e6cb0c96f4f4e59ea93</citedby><cites>FETCH-LOGICAL-c319t-f32a705bcd1661e0d8046e88528ca28b2ad3dd554d1c59e6cb0c96f4f4e59ea93</cites><orcidid>0000-0003-3147-632X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40009-020-00943-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40009-020-00943-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Abraham, Deepa</creatorcontrib><creatorcontrib>Manuel, Manju</creatorcontrib><title>Design of Transmultiplexer Filter Banks Using Ramanujan Sums</title><title>National Academy science letters</title><addtitle>Natl. Acad. Sci. Lett</addtitle><description>Ramanujan sums are sequences introduced by the famous mathematician S. Ramanujan in 1918. Ramanujan sum
c
q
(
n
)
is the sequence in
n
with periodicity
q
. Many arithmetic functions such as Euler’s totient function and Riemann zeta function can be expressed using these sequences. These sums have many attractive properties which make them suitable for signal processing domain. Ramanujan sums are orthogonal and symmetric. Implementation of Ramanujan sum-based transforms is faster compared to discrete Fourier transform, since their computation involves only co-resonant frequencies. These transforms are particularly useful in identifying periodicities in signals. Ramanujan sums are integer valued. In this letter, it is proposed to use Ramanujan sums for the design of transmultiplexer filter banks. Here, the analysis and synthesis filter coefficients are integers. Computation time is reduced considerably by replacing floating point arithmetic with integer coefficients. Rounding errors in hardware implementation are avoided, and perfect reconstruction condition in the transmultiplexer system is ensured by using these integer coefficients.</description><subject>Coefficients</subject><subject>Computation</subject><subject>Filter banks</subject><subject>Floating point arithmetic</subject><subject>Fourier analysis</subject><subject>Fourier transforms</subject><subject>History of Science</subject><subject>Humanities and Social Sciences</subject><subject>Integers</subject><subject>Mathematical analysis</subject><subject>Mathematical functions</subject><subject>Mathematics</subject><subject>multidisciplinary</subject><subject>Periodicity</subject><subject>Resonant frequencies</subject><subject>Rounding</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Sequences</subject><subject>Short Communication</subject><subject>Signal processing</subject><subject>Sums</subject><issn>0250-541X</issn><issn>2250-1754</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kNFKwzAUhoMoOOZewKuC19GTNElb8EanU0EQdAPvQpamo7NNZ04L8-3NrOCdV_858P3nwEfIOYNLBpBdoQCAggIHGlOkdH9EJpxLoCyT4phM4DBLwd5PyQxxG2mQSkrGJ-T6zmG98UlXJctgPLZD09e7xu1dSBZ108e4Nf4DkxXWfpO8mtb4YWt88ja0eEZOKtOgm_3mlKwW98v5I31-eXia3zxTm7Kip1XKTQZybUumFHNQ5iCUy3PJc2t4vuamTMtSSlEyKwun7BpsoSpRCRdXU6RTcjHe3YXuc3DY6203BB9fai7yTAhVSIgUHykbOsTgKr0LdWvCl2agD6L0KEpHUfpHlN7HUjqWMMJ-48Lf6X9a3y9kaxU</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Abraham, Deepa</creator><creator>Manuel, Manju</creator><general>Springer India</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-3147-632X</orcidid></search><sort><creationdate>20210201</creationdate><title>Design of Transmultiplexer Filter Banks Using Ramanujan Sums</title><author>Abraham, Deepa ; Manuel, Manju</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-f32a705bcd1661e0d8046e88528ca28b2ad3dd554d1c59e6cb0c96f4f4e59ea93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Coefficients</topic><topic>Computation</topic><topic>Filter banks</topic><topic>Floating point arithmetic</topic><topic>Fourier analysis</topic><topic>Fourier transforms</topic><topic>History of Science</topic><topic>Humanities and Social Sciences</topic><topic>Integers</topic><topic>Mathematical analysis</topic><topic>Mathematical functions</topic><topic>Mathematics</topic><topic>multidisciplinary</topic><topic>Periodicity</topic><topic>Resonant frequencies</topic><topic>Rounding</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Sequences</topic><topic>Short Communication</topic><topic>Signal processing</topic><topic>Sums</topic><toplevel>online_resources</toplevel><creatorcontrib>Abraham, Deepa</creatorcontrib><creatorcontrib>Manuel, Manju</creatorcontrib><collection>CrossRef</collection><jtitle>National Academy science letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abraham, Deepa</au><au>Manuel, Manju</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design of Transmultiplexer Filter Banks Using Ramanujan Sums</atitle><jtitle>National Academy science letters</jtitle><stitle>Natl. Acad. Sci. Lett</stitle><date>2021-02-01</date><risdate>2021</risdate><volume>44</volume><issue>1</issue><spage>33</spage><epage>38</epage><pages>33-38</pages><issn>0250-541X</issn><eissn>2250-1754</eissn><abstract>Ramanujan sums are sequences introduced by the famous mathematician S. Ramanujan in 1918. Ramanujan sum
c
q
(
n
)
is the sequence in
n
with periodicity
q
. Many arithmetic functions such as Euler’s totient function and Riemann zeta function can be expressed using these sequences. These sums have many attractive properties which make them suitable for signal processing domain. Ramanujan sums are orthogonal and symmetric. Implementation of Ramanujan sum-based transforms is faster compared to discrete Fourier transform, since their computation involves only co-resonant frequencies. These transforms are particularly useful in identifying periodicities in signals. Ramanujan sums are integer valued. In this letter, it is proposed to use Ramanujan sums for the design of transmultiplexer filter banks. Here, the analysis and synthesis filter coefficients are integers. Computation time is reduced considerably by replacing floating point arithmetic with integer coefficients. Rounding errors in hardware implementation are avoided, and perfect reconstruction condition in the transmultiplexer system is ensured by using these integer coefficients.</abstract><cop>New Delhi</cop><pub>Springer India</pub><doi>10.1007/s40009-020-00943-x</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-3147-632X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0250-541X |
ispartof | National Academy science letters, 2021-02, Vol.44 (1), p.33-38 |
issn | 0250-541X 2250-1754 |
language | eng |
recordid | cdi_proquest_journals_2487446950 |
source | SpringerLink Journals |
subjects | Coefficients Computation Filter banks Floating point arithmetic Fourier analysis Fourier transforms History of Science Humanities and Social Sciences Integers Mathematical analysis Mathematical functions Mathematics multidisciplinary Periodicity Resonant frequencies Rounding Science Science (multidisciplinary) Sequences Short Communication Signal processing Sums |
title | Design of Transmultiplexer Filter Banks Using Ramanujan Sums |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T03%3A26%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20of%20Transmultiplexer%20Filter%20Banks%20Using%20Ramanujan%20Sums&rft.jtitle=National%20Academy%20science%20letters&rft.au=Abraham,%20Deepa&rft.date=2021-02-01&rft.volume=44&rft.issue=1&rft.spage=33&rft.epage=38&rft.pages=33-38&rft.issn=0250-541X&rft.eissn=2250-1754&rft_id=info:doi/10.1007/s40009-020-00943-x&rft_dat=%3Cproquest_cross%3E2487446950%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2487446950&rft_id=info:pmid/&rfr_iscdi=true |