Recent Advances in Plasmonic Nanostructures for Enhanced Photocatalysis and Electrocatalysis
Plasmonic nanomaterials coupled with catalytically active surfaces can provide unique opportunities for various catalysis applications, where surface plasmons produced upon proper light excitation can be adopted to drive and/or facilitate various chemical reactions. A brief introduction to the local...
Gespeichert in:
Veröffentlicht in: | Advanced materials (Weinheim) 2021-02, Vol.33 (6), p.e2000086-n/a |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 6 |
container_start_page | e2000086 |
container_title | Advanced materials (Weinheim) |
container_volume | 33 |
creator | Li, Siwei Miao, Peng Zhang, Yuanyuan Wu, Jie Zhang, Bin Du, Yunchen Han, Xijiang Sun, Jianmin Xu, Ping |
description | Plasmonic nanomaterials coupled with catalytically active surfaces can provide unique opportunities for various catalysis applications, where surface plasmons produced upon proper light excitation can be adopted to drive and/or facilitate various chemical reactions. A brief introduction to the localized surface plasmon resonance and recent design and fabrication of highly efficient plasmonic nanostructures, including plasmonic metal nanostructures and metal/semiconductor heterostructures is given. Taking advantage of these plasmonic nanostructures, the following highlights summarize recent advances in plasmon‐driven photochemical reactions (coupling reactions, O2 dissociation and oxidation reactions, H2 dissociation and hydrogenation reactions, N2 fixation and NH3 decomposition, and CO2 reduction) and plasmon‐enhanced electrocatalytic reactions (hydrogen evolution reaction, oxygen reduction reaction, oxygen evolution reaction, alcohol oxidation reaction, and CO2 reduction). Theoretical and experimental approaches for understanding the underlying mechanism of surface plasmon are discussed. A proper discussion and perspective of the remaining challenges and future opportunities for plasmonic nanomaterials and plasmon‐related chemistry in the field of energy conversion and storage is given in conclusion.
The recent advances in applying the surface plasmon resonance effect from plasmonic nanostructures for enhanced photocatalysis and electrocatalysis are comprehensively summarized, highlighting the synthesis strategies of plasmonic nanomaterials along with future directions of plasmon‐related research. |
doi_str_mv | 10.1002/adma.202000086 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2487436758</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2487436758</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4396-a89ad10aa0892f08f6e3d11293474a83e5d9e70e435249b6ee7f9a4a13e63ff3</originalsourceid><addsrcrecordid>eNqFkMtLw0AQhxdRbK1ePUrAc-q-sskeQ60PqFqkR2GZ7oOm5FF3E6X_vSmt9uhcBma--QZ-CF0TPCYY0zswFYwpprivTJygIUkoiTmWySkaYsmSWAqeDdBFCOsekQKLczRglGIiJR-ij3erbd1GufmCWtsQFXU0LyFUTV3o6BXqJrS-023n-51rfDStVzvQRPNV0zYaWii3oQgR1Caalla3_ji8RGcOymCvDn2EFg_TxeQpnr09Pk_yWaw5kyKGTIIhGABnkjqcOWGZIYRKxlMOGbOJkTbFlrOEcrkU1qZOAgfCrGDOsRG63Ws3vvnsbGjVuul83X9UlGcpZyJNsp4a7yntmxC8dWrjiwr8VhGsdlmqXZbqL8v-4Oag7ZaVNX_4b3g9IPfAd1Ha7T86ld-_5Ef5D_Q1gPI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2487436758</pqid></control><display><type>article</type><title>Recent Advances in Plasmonic Nanostructures for Enhanced Photocatalysis and Electrocatalysis</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Li, Siwei ; Miao, Peng ; Zhang, Yuanyuan ; Wu, Jie ; Zhang, Bin ; Du, Yunchen ; Han, Xijiang ; Sun, Jianmin ; Xu, Ping</creator><creatorcontrib>Li, Siwei ; Miao, Peng ; Zhang, Yuanyuan ; Wu, Jie ; Zhang, Bin ; Du, Yunchen ; Han, Xijiang ; Sun, Jianmin ; Xu, Ping</creatorcontrib><description>Plasmonic nanomaterials coupled with catalytically active surfaces can provide unique opportunities for various catalysis applications, where surface plasmons produced upon proper light excitation can be adopted to drive and/or facilitate various chemical reactions. A brief introduction to the localized surface plasmon resonance and recent design and fabrication of highly efficient plasmonic nanostructures, including plasmonic metal nanostructures and metal/semiconductor heterostructures is given. Taking advantage of these plasmonic nanostructures, the following highlights summarize recent advances in plasmon‐driven photochemical reactions (coupling reactions, O2 dissociation and oxidation reactions, H2 dissociation and hydrogenation reactions, N2 fixation and NH3 decomposition, and CO2 reduction) and plasmon‐enhanced electrocatalytic reactions (hydrogen evolution reaction, oxygen reduction reaction, oxygen evolution reaction, alcohol oxidation reaction, and CO2 reduction). Theoretical and experimental approaches for understanding the underlying mechanism of surface plasmon are discussed. A proper discussion and perspective of the remaining challenges and future opportunities for plasmonic nanomaterials and plasmon‐related chemistry in the field of energy conversion and storage is given in conclusion.
The recent advances in applying the surface plasmon resonance effect from plasmonic nanostructures for enhanced photocatalysis and electrocatalysis are comprehensively summarized, highlighting the synthesis strategies of plasmonic nanomaterials along with future directions of plasmon‐related research.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202000086</identifier><identifier>PMID: 32201994</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Ammonia ; Carbon dioxide ; catalysis ; Chemical reactions ; Decomposition reactions ; Energy conversion ; Energy storage ; Heterostructures ; Hydrogen evolution reactions ; Materials science ; Nanomaterials ; Nanostructure ; Nitrogenation ; Oxidation ; Oxygen evolution reactions ; Oxygen reduction reactions ; Photochemical reactions ; plasmonic materials ; Plasmonics ; Plasmons ; plasmon‐driven photocatalytic reactions ; plasmon‐enhanced electrocatalytic reactions ; surface plasmon</subject><ispartof>Advanced materials (Weinheim), 2021-02, Vol.33 (6), p.e2000086-n/a</ispartof><rights>2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4396-a89ad10aa0892f08f6e3d11293474a83e5d9e70e435249b6ee7f9a4a13e63ff3</citedby><cites>FETCH-LOGICAL-c4396-a89ad10aa0892f08f6e3d11293474a83e5d9e70e435249b6ee7f9a4a13e63ff3</cites><orcidid>0000-0002-1516-4986</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202000086$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202000086$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32201994$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Siwei</creatorcontrib><creatorcontrib>Miao, Peng</creatorcontrib><creatorcontrib>Zhang, Yuanyuan</creatorcontrib><creatorcontrib>Wu, Jie</creatorcontrib><creatorcontrib>Zhang, Bin</creatorcontrib><creatorcontrib>Du, Yunchen</creatorcontrib><creatorcontrib>Han, Xijiang</creatorcontrib><creatorcontrib>Sun, Jianmin</creatorcontrib><creatorcontrib>Xu, Ping</creatorcontrib><title>Recent Advances in Plasmonic Nanostructures for Enhanced Photocatalysis and Electrocatalysis</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Plasmonic nanomaterials coupled with catalytically active surfaces can provide unique opportunities for various catalysis applications, where surface plasmons produced upon proper light excitation can be adopted to drive and/or facilitate various chemical reactions. A brief introduction to the localized surface plasmon resonance and recent design and fabrication of highly efficient plasmonic nanostructures, including plasmonic metal nanostructures and metal/semiconductor heterostructures is given. Taking advantage of these plasmonic nanostructures, the following highlights summarize recent advances in plasmon‐driven photochemical reactions (coupling reactions, O2 dissociation and oxidation reactions, H2 dissociation and hydrogenation reactions, N2 fixation and NH3 decomposition, and CO2 reduction) and plasmon‐enhanced electrocatalytic reactions (hydrogen evolution reaction, oxygen reduction reaction, oxygen evolution reaction, alcohol oxidation reaction, and CO2 reduction). Theoretical and experimental approaches for understanding the underlying mechanism of surface plasmon are discussed. A proper discussion and perspective of the remaining challenges and future opportunities for plasmonic nanomaterials and plasmon‐related chemistry in the field of energy conversion and storage is given in conclusion.
The recent advances in applying the surface plasmon resonance effect from plasmonic nanostructures for enhanced photocatalysis and electrocatalysis are comprehensively summarized, highlighting the synthesis strategies of plasmonic nanomaterials along with future directions of plasmon‐related research.</description><subject>Ammonia</subject><subject>Carbon dioxide</subject><subject>catalysis</subject><subject>Chemical reactions</subject><subject>Decomposition reactions</subject><subject>Energy conversion</subject><subject>Energy storage</subject><subject>Heterostructures</subject><subject>Hydrogen evolution reactions</subject><subject>Materials science</subject><subject>Nanomaterials</subject><subject>Nanostructure</subject><subject>Nitrogenation</subject><subject>Oxidation</subject><subject>Oxygen evolution reactions</subject><subject>Oxygen reduction reactions</subject><subject>Photochemical reactions</subject><subject>plasmonic materials</subject><subject>Plasmonics</subject><subject>Plasmons</subject><subject>plasmon‐driven photocatalytic reactions</subject><subject>plasmon‐enhanced electrocatalytic reactions</subject><subject>surface plasmon</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkMtLw0AQhxdRbK1ePUrAc-q-sskeQ60PqFqkR2GZ7oOm5FF3E6X_vSmt9uhcBma--QZ-CF0TPCYY0zswFYwpprivTJygIUkoiTmWySkaYsmSWAqeDdBFCOsekQKLczRglGIiJR-ij3erbd1GufmCWtsQFXU0LyFUTV3o6BXqJrS-023n-51rfDStVzvQRPNV0zYaWii3oQgR1Caalla3_ji8RGcOymCvDn2EFg_TxeQpnr09Pk_yWaw5kyKGTIIhGABnkjqcOWGZIYRKxlMOGbOJkTbFlrOEcrkU1qZOAgfCrGDOsRG63Ws3vvnsbGjVuul83X9UlGcpZyJNsp4a7yntmxC8dWrjiwr8VhGsdlmqXZbqL8v-4Oag7ZaVNX_4b3g9IPfAd1Ha7T86ld-_5Ef5D_Q1gPI</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Li, Siwei</creator><creator>Miao, Peng</creator><creator>Zhang, Yuanyuan</creator><creator>Wu, Jie</creator><creator>Zhang, Bin</creator><creator>Du, Yunchen</creator><creator>Han, Xijiang</creator><creator>Sun, Jianmin</creator><creator>Xu, Ping</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-1516-4986</orcidid></search><sort><creationdate>20210201</creationdate><title>Recent Advances in Plasmonic Nanostructures for Enhanced Photocatalysis and Electrocatalysis</title><author>Li, Siwei ; Miao, Peng ; Zhang, Yuanyuan ; Wu, Jie ; Zhang, Bin ; Du, Yunchen ; Han, Xijiang ; Sun, Jianmin ; Xu, Ping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4396-a89ad10aa0892f08f6e3d11293474a83e5d9e70e435249b6ee7f9a4a13e63ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Ammonia</topic><topic>Carbon dioxide</topic><topic>catalysis</topic><topic>Chemical reactions</topic><topic>Decomposition reactions</topic><topic>Energy conversion</topic><topic>Energy storage</topic><topic>Heterostructures</topic><topic>Hydrogen evolution reactions</topic><topic>Materials science</topic><topic>Nanomaterials</topic><topic>Nanostructure</topic><topic>Nitrogenation</topic><topic>Oxidation</topic><topic>Oxygen evolution reactions</topic><topic>Oxygen reduction reactions</topic><topic>Photochemical reactions</topic><topic>plasmonic materials</topic><topic>Plasmonics</topic><topic>Plasmons</topic><topic>plasmon‐driven photocatalytic reactions</topic><topic>plasmon‐enhanced electrocatalytic reactions</topic><topic>surface plasmon</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Siwei</creatorcontrib><creatorcontrib>Miao, Peng</creatorcontrib><creatorcontrib>Zhang, Yuanyuan</creatorcontrib><creatorcontrib>Wu, Jie</creatorcontrib><creatorcontrib>Zhang, Bin</creatorcontrib><creatorcontrib>Du, Yunchen</creatorcontrib><creatorcontrib>Han, Xijiang</creatorcontrib><creatorcontrib>Sun, Jianmin</creatorcontrib><creatorcontrib>Xu, Ping</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Siwei</au><au>Miao, Peng</au><au>Zhang, Yuanyuan</au><au>Wu, Jie</au><au>Zhang, Bin</au><au>Du, Yunchen</au><au>Han, Xijiang</au><au>Sun, Jianmin</au><au>Xu, Ping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recent Advances in Plasmonic Nanostructures for Enhanced Photocatalysis and Electrocatalysis</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2021-02-01</date><risdate>2021</risdate><volume>33</volume><issue>6</issue><spage>e2000086</spage><epage>n/a</epage><pages>e2000086-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Plasmonic nanomaterials coupled with catalytically active surfaces can provide unique opportunities for various catalysis applications, where surface plasmons produced upon proper light excitation can be adopted to drive and/or facilitate various chemical reactions. A brief introduction to the localized surface plasmon resonance and recent design and fabrication of highly efficient plasmonic nanostructures, including plasmonic metal nanostructures and metal/semiconductor heterostructures is given. Taking advantage of these plasmonic nanostructures, the following highlights summarize recent advances in plasmon‐driven photochemical reactions (coupling reactions, O2 dissociation and oxidation reactions, H2 dissociation and hydrogenation reactions, N2 fixation and NH3 decomposition, and CO2 reduction) and plasmon‐enhanced electrocatalytic reactions (hydrogen evolution reaction, oxygen reduction reaction, oxygen evolution reaction, alcohol oxidation reaction, and CO2 reduction). Theoretical and experimental approaches for understanding the underlying mechanism of surface plasmon are discussed. A proper discussion and perspective of the remaining challenges and future opportunities for plasmonic nanomaterials and plasmon‐related chemistry in the field of energy conversion and storage is given in conclusion.
The recent advances in applying the surface plasmon resonance effect from plasmonic nanostructures for enhanced photocatalysis and electrocatalysis are comprehensively summarized, highlighting the synthesis strategies of plasmonic nanomaterials along with future directions of plasmon‐related research.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>32201994</pmid><doi>10.1002/adma.202000086</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-1516-4986</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0935-9648 |
ispartof | Advanced materials (Weinheim), 2021-02, Vol.33 (6), p.e2000086-n/a |
issn | 0935-9648 1521-4095 |
language | eng |
recordid | cdi_proquest_journals_2487436758 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Ammonia Carbon dioxide catalysis Chemical reactions Decomposition reactions Energy conversion Energy storage Heterostructures Hydrogen evolution reactions Materials science Nanomaterials Nanostructure Nitrogenation Oxidation Oxygen evolution reactions Oxygen reduction reactions Photochemical reactions plasmonic materials Plasmonics Plasmons plasmon‐driven photocatalytic reactions plasmon‐enhanced electrocatalytic reactions surface plasmon |
title | Recent Advances in Plasmonic Nanostructures for Enhanced Photocatalysis and Electrocatalysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T04%3A44%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recent%20Advances%20in%20Plasmonic%20Nanostructures%20for%20Enhanced%20Photocatalysis%20and%20Electrocatalysis&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Li,%20Siwei&rft.date=2021-02-01&rft.volume=33&rft.issue=6&rft.spage=e2000086&rft.epage=n/a&rft.pages=e2000086-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202000086&rft_dat=%3Cproquest_cross%3E2487436758%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2487436758&rft_id=info:pmid/32201994&rfr_iscdi=true |