Recent Advances in Plasmonic Nanostructures for Enhanced Photocatalysis and Electrocatalysis

Plasmonic nanomaterials coupled with catalytically active surfaces can provide unique opportunities for various catalysis applications, where surface plasmons produced upon proper light excitation can be adopted to drive and/or facilitate various chemical reactions. A brief introduction to the local...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2021-02, Vol.33 (6), p.e2000086-n/a
Hauptverfasser: Li, Siwei, Miao, Peng, Zhang, Yuanyuan, Wu, Jie, Zhang, Bin, Du, Yunchen, Han, Xijiang, Sun, Jianmin, Xu, Ping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 6
container_start_page e2000086
container_title Advanced materials (Weinheim)
container_volume 33
creator Li, Siwei
Miao, Peng
Zhang, Yuanyuan
Wu, Jie
Zhang, Bin
Du, Yunchen
Han, Xijiang
Sun, Jianmin
Xu, Ping
description Plasmonic nanomaterials coupled with catalytically active surfaces can provide unique opportunities for various catalysis applications, where surface plasmons produced upon proper light excitation can be adopted to drive and/or facilitate various chemical reactions. A brief introduction to the localized surface plasmon resonance and recent design and fabrication of highly efficient plasmonic nanostructures, including plasmonic metal nanostructures and metal/semiconductor heterostructures is given. Taking advantage of these plasmonic nanostructures, the following highlights summarize recent advances in plasmon‐driven photochemical reactions (coupling reactions, O2 dissociation and oxidation reactions, H2 dissociation and hydrogenation reactions, N2 fixation and NH3 decomposition, and CO2 reduction) and plasmon‐enhanced electrocatalytic reactions (hydrogen evolution reaction, oxygen reduction reaction, oxygen evolution reaction, alcohol oxidation reaction, and CO2 reduction). Theoretical and experimental approaches for understanding the underlying mechanism of surface plasmon are discussed. A proper discussion and perspective of the remaining challenges and future opportunities for plasmonic nanomaterials and plasmon‐related chemistry in the field of energy conversion and storage is given in conclusion. The recent advances in applying the surface plasmon resonance effect from plasmonic nanostructures for enhanced photocatalysis and electrocatalysis are comprehensively summarized, highlighting the synthesis strategies of plasmonic nanomaterials along with future directions of plasmon‐related research.
doi_str_mv 10.1002/adma.202000086
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2487436758</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2487436758</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4396-a89ad10aa0892f08f6e3d11293474a83e5d9e70e435249b6ee7f9a4a13e63ff3</originalsourceid><addsrcrecordid>eNqFkMtLw0AQhxdRbK1ePUrAc-q-sskeQ60PqFqkR2GZ7oOm5FF3E6X_vSmt9uhcBma--QZ-CF0TPCYY0zswFYwpprivTJygIUkoiTmWySkaYsmSWAqeDdBFCOsekQKLczRglGIiJR-ij3erbd1GufmCWtsQFXU0LyFUTV3o6BXqJrS-023n-51rfDStVzvQRPNV0zYaWii3oQgR1Caalla3_ji8RGcOymCvDn2EFg_TxeQpnr09Pk_yWaw5kyKGTIIhGABnkjqcOWGZIYRKxlMOGbOJkTbFlrOEcrkU1qZOAgfCrGDOsRG63Ws3vvnsbGjVuul83X9UlGcpZyJNsp4a7yntmxC8dWrjiwr8VhGsdlmqXZbqL8v-4Oag7ZaVNX_4b3g9IPfAd1Ha7T86ld-_5Ef5D_Q1gPI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2487436758</pqid></control><display><type>article</type><title>Recent Advances in Plasmonic Nanostructures for Enhanced Photocatalysis and Electrocatalysis</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Li, Siwei ; Miao, Peng ; Zhang, Yuanyuan ; Wu, Jie ; Zhang, Bin ; Du, Yunchen ; Han, Xijiang ; Sun, Jianmin ; Xu, Ping</creator><creatorcontrib>Li, Siwei ; Miao, Peng ; Zhang, Yuanyuan ; Wu, Jie ; Zhang, Bin ; Du, Yunchen ; Han, Xijiang ; Sun, Jianmin ; Xu, Ping</creatorcontrib><description>Plasmonic nanomaterials coupled with catalytically active surfaces can provide unique opportunities for various catalysis applications, where surface plasmons produced upon proper light excitation can be adopted to drive and/or facilitate various chemical reactions. A brief introduction to the localized surface plasmon resonance and recent design and fabrication of highly efficient plasmonic nanostructures, including plasmonic metal nanostructures and metal/semiconductor heterostructures is given. Taking advantage of these plasmonic nanostructures, the following highlights summarize recent advances in plasmon‐driven photochemical reactions (coupling reactions, O2 dissociation and oxidation reactions, H2 dissociation and hydrogenation reactions, N2 fixation and NH3 decomposition, and CO2 reduction) and plasmon‐enhanced electrocatalytic reactions (hydrogen evolution reaction, oxygen reduction reaction, oxygen evolution reaction, alcohol oxidation reaction, and CO2 reduction). Theoretical and experimental approaches for understanding the underlying mechanism of surface plasmon are discussed. A proper discussion and perspective of the remaining challenges and future opportunities for plasmonic nanomaterials and plasmon‐related chemistry in the field of energy conversion and storage is given in conclusion. The recent advances in applying the surface plasmon resonance effect from plasmonic nanostructures for enhanced photocatalysis and electrocatalysis are comprehensively summarized, highlighting the synthesis strategies of plasmonic nanomaterials along with future directions of plasmon‐related research.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202000086</identifier><identifier>PMID: 32201994</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Ammonia ; Carbon dioxide ; catalysis ; Chemical reactions ; Decomposition reactions ; Energy conversion ; Energy storage ; Heterostructures ; Hydrogen evolution reactions ; Materials science ; Nanomaterials ; Nanostructure ; Nitrogenation ; Oxidation ; Oxygen evolution reactions ; Oxygen reduction reactions ; Photochemical reactions ; plasmonic materials ; Plasmonics ; Plasmons ; plasmon‐driven photocatalytic reactions ; plasmon‐enhanced electrocatalytic reactions ; surface plasmon</subject><ispartof>Advanced materials (Weinheim), 2021-02, Vol.33 (6), p.e2000086-n/a</ispartof><rights>2020 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2020 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4396-a89ad10aa0892f08f6e3d11293474a83e5d9e70e435249b6ee7f9a4a13e63ff3</citedby><cites>FETCH-LOGICAL-c4396-a89ad10aa0892f08f6e3d11293474a83e5d9e70e435249b6ee7f9a4a13e63ff3</cites><orcidid>0000-0002-1516-4986</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202000086$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202000086$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32201994$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Siwei</creatorcontrib><creatorcontrib>Miao, Peng</creatorcontrib><creatorcontrib>Zhang, Yuanyuan</creatorcontrib><creatorcontrib>Wu, Jie</creatorcontrib><creatorcontrib>Zhang, Bin</creatorcontrib><creatorcontrib>Du, Yunchen</creatorcontrib><creatorcontrib>Han, Xijiang</creatorcontrib><creatorcontrib>Sun, Jianmin</creatorcontrib><creatorcontrib>Xu, Ping</creatorcontrib><title>Recent Advances in Plasmonic Nanostructures for Enhanced Photocatalysis and Electrocatalysis</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Plasmonic nanomaterials coupled with catalytically active surfaces can provide unique opportunities for various catalysis applications, where surface plasmons produced upon proper light excitation can be adopted to drive and/or facilitate various chemical reactions. A brief introduction to the localized surface plasmon resonance and recent design and fabrication of highly efficient plasmonic nanostructures, including plasmonic metal nanostructures and metal/semiconductor heterostructures is given. Taking advantage of these plasmonic nanostructures, the following highlights summarize recent advances in plasmon‐driven photochemical reactions (coupling reactions, O2 dissociation and oxidation reactions, H2 dissociation and hydrogenation reactions, N2 fixation and NH3 decomposition, and CO2 reduction) and plasmon‐enhanced electrocatalytic reactions (hydrogen evolution reaction, oxygen reduction reaction, oxygen evolution reaction, alcohol oxidation reaction, and CO2 reduction). Theoretical and experimental approaches for understanding the underlying mechanism of surface plasmon are discussed. A proper discussion and perspective of the remaining challenges and future opportunities for plasmonic nanomaterials and plasmon‐related chemistry in the field of energy conversion and storage is given in conclusion. The recent advances in applying the surface plasmon resonance effect from plasmonic nanostructures for enhanced photocatalysis and electrocatalysis are comprehensively summarized, highlighting the synthesis strategies of plasmonic nanomaterials along with future directions of plasmon‐related research.</description><subject>Ammonia</subject><subject>Carbon dioxide</subject><subject>catalysis</subject><subject>Chemical reactions</subject><subject>Decomposition reactions</subject><subject>Energy conversion</subject><subject>Energy storage</subject><subject>Heterostructures</subject><subject>Hydrogen evolution reactions</subject><subject>Materials science</subject><subject>Nanomaterials</subject><subject>Nanostructure</subject><subject>Nitrogenation</subject><subject>Oxidation</subject><subject>Oxygen evolution reactions</subject><subject>Oxygen reduction reactions</subject><subject>Photochemical reactions</subject><subject>plasmonic materials</subject><subject>Plasmonics</subject><subject>Plasmons</subject><subject>plasmon‐driven photocatalytic reactions</subject><subject>plasmon‐enhanced electrocatalytic reactions</subject><subject>surface plasmon</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkMtLw0AQhxdRbK1ePUrAc-q-sskeQ60PqFqkR2GZ7oOm5FF3E6X_vSmt9uhcBma--QZ-CF0TPCYY0zswFYwpprivTJygIUkoiTmWySkaYsmSWAqeDdBFCOsekQKLczRglGIiJR-ij3erbd1GufmCWtsQFXU0LyFUTV3o6BXqJrS-023n-51rfDStVzvQRPNV0zYaWii3oQgR1Caalla3_ji8RGcOymCvDn2EFg_TxeQpnr09Pk_yWaw5kyKGTIIhGABnkjqcOWGZIYRKxlMOGbOJkTbFlrOEcrkU1qZOAgfCrGDOsRG63Ws3vvnsbGjVuul83X9UlGcpZyJNsp4a7yntmxC8dWrjiwr8VhGsdlmqXZbqL8v-4Oag7ZaVNX_4b3g9IPfAd1Ha7T86ld-_5Ef5D_Q1gPI</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Li, Siwei</creator><creator>Miao, Peng</creator><creator>Zhang, Yuanyuan</creator><creator>Wu, Jie</creator><creator>Zhang, Bin</creator><creator>Du, Yunchen</creator><creator>Han, Xijiang</creator><creator>Sun, Jianmin</creator><creator>Xu, Ping</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-1516-4986</orcidid></search><sort><creationdate>20210201</creationdate><title>Recent Advances in Plasmonic Nanostructures for Enhanced Photocatalysis and Electrocatalysis</title><author>Li, Siwei ; Miao, Peng ; Zhang, Yuanyuan ; Wu, Jie ; Zhang, Bin ; Du, Yunchen ; Han, Xijiang ; Sun, Jianmin ; Xu, Ping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4396-a89ad10aa0892f08f6e3d11293474a83e5d9e70e435249b6ee7f9a4a13e63ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Ammonia</topic><topic>Carbon dioxide</topic><topic>catalysis</topic><topic>Chemical reactions</topic><topic>Decomposition reactions</topic><topic>Energy conversion</topic><topic>Energy storage</topic><topic>Heterostructures</topic><topic>Hydrogen evolution reactions</topic><topic>Materials science</topic><topic>Nanomaterials</topic><topic>Nanostructure</topic><topic>Nitrogenation</topic><topic>Oxidation</topic><topic>Oxygen evolution reactions</topic><topic>Oxygen reduction reactions</topic><topic>Photochemical reactions</topic><topic>plasmonic materials</topic><topic>Plasmonics</topic><topic>Plasmons</topic><topic>plasmon‐driven photocatalytic reactions</topic><topic>plasmon‐enhanced electrocatalytic reactions</topic><topic>surface plasmon</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Siwei</creatorcontrib><creatorcontrib>Miao, Peng</creatorcontrib><creatorcontrib>Zhang, Yuanyuan</creatorcontrib><creatorcontrib>Wu, Jie</creatorcontrib><creatorcontrib>Zhang, Bin</creatorcontrib><creatorcontrib>Du, Yunchen</creatorcontrib><creatorcontrib>Han, Xijiang</creatorcontrib><creatorcontrib>Sun, Jianmin</creatorcontrib><creatorcontrib>Xu, Ping</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Siwei</au><au>Miao, Peng</au><au>Zhang, Yuanyuan</au><au>Wu, Jie</au><au>Zhang, Bin</au><au>Du, Yunchen</au><au>Han, Xijiang</au><au>Sun, Jianmin</au><au>Xu, Ping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recent Advances in Plasmonic Nanostructures for Enhanced Photocatalysis and Electrocatalysis</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2021-02-01</date><risdate>2021</risdate><volume>33</volume><issue>6</issue><spage>e2000086</spage><epage>n/a</epage><pages>e2000086-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Plasmonic nanomaterials coupled with catalytically active surfaces can provide unique opportunities for various catalysis applications, where surface plasmons produced upon proper light excitation can be adopted to drive and/or facilitate various chemical reactions. A brief introduction to the localized surface plasmon resonance and recent design and fabrication of highly efficient plasmonic nanostructures, including plasmonic metal nanostructures and metal/semiconductor heterostructures is given. Taking advantage of these plasmonic nanostructures, the following highlights summarize recent advances in plasmon‐driven photochemical reactions (coupling reactions, O2 dissociation and oxidation reactions, H2 dissociation and hydrogenation reactions, N2 fixation and NH3 decomposition, and CO2 reduction) and plasmon‐enhanced electrocatalytic reactions (hydrogen evolution reaction, oxygen reduction reaction, oxygen evolution reaction, alcohol oxidation reaction, and CO2 reduction). Theoretical and experimental approaches for understanding the underlying mechanism of surface plasmon are discussed. A proper discussion and perspective of the remaining challenges and future opportunities for plasmonic nanomaterials and plasmon‐related chemistry in the field of energy conversion and storage is given in conclusion. The recent advances in applying the surface plasmon resonance effect from plasmonic nanostructures for enhanced photocatalysis and electrocatalysis are comprehensively summarized, highlighting the synthesis strategies of plasmonic nanomaterials along with future directions of plasmon‐related research.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>32201994</pmid><doi>10.1002/adma.202000086</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-1516-4986</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2021-02, Vol.33 (6), p.e2000086-n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_proquest_journals_2487436758
source Wiley Online Library Journals Frontfile Complete
subjects Ammonia
Carbon dioxide
catalysis
Chemical reactions
Decomposition reactions
Energy conversion
Energy storage
Heterostructures
Hydrogen evolution reactions
Materials science
Nanomaterials
Nanostructure
Nitrogenation
Oxidation
Oxygen evolution reactions
Oxygen reduction reactions
Photochemical reactions
plasmonic materials
Plasmonics
Plasmons
plasmon‐driven photocatalytic reactions
plasmon‐enhanced electrocatalytic reactions
surface plasmon
title Recent Advances in Plasmonic Nanostructures for Enhanced Photocatalysis and Electrocatalysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T04%3A44%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recent%20Advances%20in%20Plasmonic%20Nanostructures%20for%20Enhanced%20Photocatalysis%20and%20Electrocatalysis&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Li,%20Siwei&rft.date=2021-02-01&rft.volume=33&rft.issue=6&rft.spage=e2000086&rft.epage=n/a&rft.pages=e2000086-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202000086&rft_dat=%3Cproquest_cross%3E2487436758%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2487436758&rft_id=info:pmid/32201994&rfr_iscdi=true