Modal regression for fixed effects panel data
Most research on panel data focuses on mean or quantile regression, while there is not much research about regression methods based on the mode. In this paper, we propose a new model named fixed effects modal regression for panel data in which we model how the conditional mode of the response variab...
Gespeichert in:
Veröffentlicht in: | Empirical economics 2021, Vol.60 (1), p.261-308 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 308 |
---|---|
container_issue | 1 |
container_start_page | 261 |
container_title | Empirical economics |
container_volume | 60 |
creator | Ullah, Aman Wang, Tao Yao, Weixin |
description | Most research on panel data focuses on mean or quantile regression, while there is not much research about regression methods based on the mode. In this paper, we propose a new model named
fixed effects modal regression
for panel data in which we model how the conditional mode of the response variable depends on the covariates and employ a kernel-based objective function to simplify the computation. The proposed modal regression can complement the mean and quantile regressions and provide better central tendency measure and prediction performance when the data are skewed. We present a linear dummy modal regression method and a pseudo-demodeing two-step method to estimate the proposed modal regression. The computations can be easily implemented using a modified modal–expectation–maximization algorithm. We investigate the asymptotic properties of the modal estimators under some mild regularity conditions when the number of individuals,
N
, and the number of time periods,
T
, go to infinity. The optimal bandwidths with order
(
N
T
)
-
1
/
7
are obtained by minimizing the asymptotic weighted mean squared errors. Monte Carlo simulations and two real data analyses of a public capital productivity study and a carbon dioxide emissions study are presented to demonstrate the finite sample performance of the newly proposed modal regression. |
doi_str_mv | 10.1007/s00181-020-01999-w |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2487255952</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2487255952</sourcerecordid><originalsourceid>FETCH-LOGICAL-c453t-1d0f65503343e1944cb61c2b34a066aa4d6285ac3edc37d5e278c653da5f2f8a3</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwA6wisTaMPZ44WaKKl1TEBtaW60eVKiTFTlX4ewJB6o7VLObce6XD2KWAawGgbzKAqAQHCRxEXdd8f8RmQiHxqpbimM0AteYaUZ6ys5w3AIAVqRnjz723bZHCOoWcm74rYp-K2HwGX4QYgxtysbVdaAtvB3vOTqJtc7j4u3P2dn_3unjky5eHp8XtkjtFOHDhIZZEgKgwiFoptyqFkytUFsrSWuVLWZF1GLxD7SlIXbmS0FuKMlYW5-xq6t2m_mMX8mA2_S5146SRqtKSqCY5UnKiXOpzTiGabWrebfoyAsyPFjNpMaMW86vF7MdQMYWC67smHyKapCQlaxoRnJA8Prt1SIf1f4q_AeA9bpo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2487255952</pqid></control><display><type>article</type><title>Modal regression for fixed effects panel data</title><source>SpringerNature Journals</source><source>EBSCOhost Business Source Complete</source><creator>Ullah, Aman ; Wang, Tao ; Yao, Weixin</creator><creatorcontrib>Ullah, Aman ; Wang, Tao ; Yao, Weixin</creatorcontrib><description>Most research on panel data focuses on mean or quantile regression, while there is not much research about regression methods based on the mode. In this paper, we propose a new model named
fixed effects modal regression
for panel data in which we model how the conditional mode of the response variable depends on the covariates and employ a kernel-based objective function to simplify the computation. The proposed modal regression can complement the mean and quantile regressions and provide better central tendency measure and prediction performance when the data are skewed. We present a linear dummy modal regression method and a pseudo-demodeing two-step method to estimate the proposed modal regression. The computations can be easily implemented using a modified modal–expectation–maximization algorithm. We investigate the asymptotic properties of the modal estimators under some mild regularity conditions when the number of individuals,
N
, and the number of time periods,
T
, go to infinity. The optimal bandwidths with order
(
N
T
)
-
1
/
7
are obtained by minimizing the asymptotic weighted mean squared errors. Monte Carlo simulations and two real data analyses of a public capital productivity study and a carbon dioxide emissions study are presented to demonstrate the finite sample performance of the newly proposed modal regression.</description><identifier>ISSN: 0377-7332</identifier><identifier>EISSN: 1435-8921</identifier><identifier>DOI: 10.1007/s00181-020-01999-w</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Capital productivity ; Carbon dioxide ; Data models ; Datasets ; Dummy ; Econometrics ; Economic theory ; Economic Theory/Quantitative Economics/Mathematical Methods ; Economics ; Economics and Finance ; Finance ; Insurance ; Longitudinal studies ; Management ; Panel data ; Productivity ; Statistics for Business</subject><ispartof>Empirical economics, 2021, Vol.60 (1), p.261-308</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c453t-1d0f65503343e1944cb61c2b34a066aa4d6285ac3edc37d5e278c653da5f2f8a3</citedby><cites>FETCH-LOGICAL-c453t-1d0f65503343e1944cb61c2b34a066aa4d6285ac3edc37d5e278c653da5f2f8a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00181-020-01999-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00181-020-01999-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Ullah, Aman</creatorcontrib><creatorcontrib>Wang, Tao</creatorcontrib><creatorcontrib>Yao, Weixin</creatorcontrib><title>Modal regression for fixed effects panel data</title><title>Empirical economics</title><addtitle>Empir Econ</addtitle><description>Most research on panel data focuses on mean or quantile regression, while there is not much research about regression methods based on the mode. In this paper, we propose a new model named
fixed effects modal regression
for panel data in which we model how the conditional mode of the response variable depends on the covariates and employ a kernel-based objective function to simplify the computation. The proposed modal regression can complement the mean and quantile regressions and provide better central tendency measure and prediction performance when the data are skewed. We present a linear dummy modal regression method and a pseudo-demodeing two-step method to estimate the proposed modal regression. The computations can be easily implemented using a modified modal–expectation–maximization algorithm. We investigate the asymptotic properties of the modal estimators under some mild regularity conditions when the number of individuals,
N
, and the number of time periods,
T
, go to infinity. The optimal bandwidths with order
(
N
T
)
-
1
/
7
are obtained by minimizing the asymptotic weighted mean squared errors. Monte Carlo simulations and two real data analyses of a public capital productivity study and a carbon dioxide emissions study are presented to demonstrate the finite sample performance of the newly proposed modal regression.</description><subject>Capital productivity</subject><subject>Carbon dioxide</subject><subject>Data models</subject><subject>Datasets</subject><subject>Dummy</subject><subject>Econometrics</subject><subject>Economic theory</subject><subject>Economic Theory/Quantitative Economics/Mathematical Methods</subject><subject>Economics</subject><subject>Economics and Finance</subject><subject>Finance</subject><subject>Insurance</subject><subject>Longitudinal studies</subject><subject>Management</subject><subject>Panel data</subject><subject>Productivity</subject><subject>Statistics for Business</subject><issn>0377-7332</issn><issn>1435-8921</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kMtOwzAQRS0EEqXwA6wisTaMPZ44WaKKl1TEBtaW60eVKiTFTlX4ewJB6o7VLObce6XD2KWAawGgbzKAqAQHCRxEXdd8f8RmQiHxqpbimM0AteYaUZ6ys5w3AIAVqRnjz723bZHCOoWcm74rYp-K2HwGX4QYgxtysbVdaAtvB3vOTqJtc7j4u3P2dn_3unjky5eHp8XtkjtFOHDhIZZEgKgwiFoptyqFkytUFsrSWuVLWZF1GLxD7SlIXbmS0FuKMlYW5-xq6t2m_mMX8mA2_S5146SRqtKSqCY5UnKiXOpzTiGabWrebfoyAsyPFjNpMaMW86vF7MdQMYWC67smHyKapCQlaxoRnJA8Prt1SIf1f4q_AeA9bpo</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Ullah, Aman</creator><creator>Wang, Tao</creator><creator>Yao, Weixin</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>OQ6</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AO</scope><scope>8BJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FQK</scope><scope>FRNLG</scope><scope>F~G</scope><scope>JBE</scope><scope>K60</scope><scope>K6~</scope><scope>K8~</scope><scope>L.-</scope><scope>M0C</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>2021</creationdate><title>Modal regression for fixed effects panel data</title><author>Ullah, Aman ; Wang, Tao ; Yao, Weixin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c453t-1d0f65503343e1944cb61c2b34a066aa4d6285ac3edc37d5e278c653da5f2f8a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Capital productivity</topic><topic>Carbon dioxide</topic><topic>Data models</topic><topic>Datasets</topic><topic>Dummy</topic><topic>Econometrics</topic><topic>Economic theory</topic><topic>Economic Theory/Quantitative Economics/Mathematical Methods</topic><topic>Economics</topic><topic>Economics and Finance</topic><topic>Finance</topic><topic>Insurance</topic><topic>Longitudinal studies</topic><topic>Management</topic><topic>Panel data</topic><topic>Productivity</topic><topic>Statistics for Business</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ullah, Aman</creatorcontrib><creatorcontrib>Wang, Tao</creatorcontrib><creatorcontrib>Yao, Weixin</creatorcontrib><collection>ECONIS</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>International Bibliography of the Social Sciences</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>DELNET Management Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Empirical economics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ullah, Aman</au><au>Wang, Tao</au><au>Yao, Weixin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modal regression for fixed effects panel data</atitle><jtitle>Empirical economics</jtitle><stitle>Empir Econ</stitle><date>2021</date><risdate>2021</risdate><volume>60</volume><issue>1</issue><spage>261</spage><epage>308</epage><pages>261-308</pages><issn>0377-7332</issn><eissn>1435-8921</eissn><abstract>Most research on panel data focuses on mean or quantile regression, while there is not much research about regression methods based on the mode. In this paper, we propose a new model named
fixed effects modal regression
for panel data in which we model how the conditional mode of the response variable depends on the covariates and employ a kernel-based objective function to simplify the computation. The proposed modal regression can complement the mean and quantile regressions and provide better central tendency measure and prediction performance when the data are skewed. We present a linear dummy modal regression method and a pseudo-demodeing two-step method to estimate the proposed modal regression. The computations can be easily implemented using a modified modal–expectation–maximization algorithm. We investigate the asymptotic properties of the modal estimators under some mild regularity conditions when the number of individuals,
N
, and the number of time periods,
T
, go to infinity. The optimal bandwidths with order
(
N
T
)
-
1
/
7
are obtained by minimizing the asymptotic weighted mean squared errors. Monte Carlo simulations and two real data analyses of a public capital productivity study and a carbon dioxide emissions study are presented to demonstrate the finite sample performance of the newly proposed modal regression.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00181-020-01999-w</doi><tpages>48</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0377-7332 |
ispartof | Empirical economics, 2021, Vol.60 (1), p.261-308 |
issn | 0377-7332 1435-8921 |
language | eng |
recordid | cdi_proquest_journals_2487255952 |
source | SpringerNature Journals; EBSCOhost Business Source Complete |
subjects | Capital productivity Carbon dioxide Data models Datasets Dummy Econometrics Economic theory Economic Theory/Quantitative Economics/Mathematical Methods Economics Economics and Finance Finance Insurance Longitudinal studies Management Panel data Productivity Statistics for Business |
title | Modal regression for fixed effects panel data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T22%3A35%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modal%20regression%20for%20fixed%20effects%20panel%20data&rft.jtitle=Empirical%20economics&rft.au=Ullah,%20Aman&rft.date=2021&rft.volume=60&rft.issue=1&rft.spage=261&rft.epage=308&rft.pages=261-308&rft.issn=0377-7332&rft.eissn=1435-8921&rft_id=info:doi/10.1007/s00181-020-01999-w&rft_dat=%3Cproquest_cross%3E2487255952%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2487255952&rft_id=info:pmid/&rfr_iscdi=true |