Uncertainty quantification of percolating electrical conductance for wavy carbon nanotube-filled polymer nanocomposites using Bayesian inference
This research focuses on the uncertainty quantification of electrical percolation behavior in wavy carbon nanotube (CNT)-filled polymer nanocomposites with a three-dimensional representative volume element accounting for both tunneling resistance (quantum carrier tunneling) and stochasticity in CNT...
Gespeichert in:
Veröffentlicht in: | Carbon (New York) 2021-02, Vol.172, p.308-323 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 323 |
---|---|
container_issue | |
container_start_page | 308 |
container_title | Carbon (New York) |
container_volume | 172 |
creator | Doh, Jaehyeok Park, Sang-In Yang, Qing Raghavan, Nagarajan |
description | This research focuses on the uncertainty quantification of electrical percolation behavior in wavy carbon nanotube (CNT)-filled polymer nanocomposites with a three-dimensional representative volume element accounting for both tunneling resistance (quantum carrier tunneling) and stochasticity in CNT waviness. The developed percolation model is validated with existing experimental data, and model parameters for electrical conductance converge to the optimal value with Markov Chain Monte Carlo (MCMC) based on Bayesian inference. The predicted 95% confidence interval of electrical conductance indicates a different trend between two-and three-parameters of the electrical conductance model. The main trend of correlation between the percolation threshold (φc) and a parameter of the phase transition (critical exponent, t) indicates a statistically linear relationship via evaluation of the Pearson correlation coefficient. Moreover, the correlation between intrinsic conductance of CNTs (σo) and t also strongly affect the magnitude and slope of electrical conductance in uncertainty quantification. This work can contribute to a robust and reliable design of the PNC considering the physical uncertainty satisfying the target electrical performance through controlling φc, σo, and t.
[Display omitted]
•Waviness of CNT and quantum tunneling resistance are accounted for in developed percolation model.•Our percolation model is verified with existing experimental and numerical data sets.•The impact on electrical percolation threshold for varying degrees of CNT waviness is probed.•Uncertainty Quantification (UQ) for electrical conductance is conducted with MCMC based on Bayesian inference.•The 95% confidence interval for PNC conductance is predicted via our UQ framework. |
doi_str_mv | 10.1016/j.carbon.2020.09.092 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2487169425</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S000862232030960X</els_id><sourcerecordid>2487169425</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-726320d37cd453665e07534a5150eab9121ad6ab9a3441704ed646f9917a60a53</originalsourceid><addsrcrecordid>eNp9UE1r3TAQFKGBvqb5BzkIevarvizbl0ATkrYQ6KU5i33yOujhJzmSnOB_kZ9cOc65sCCNtDO7M4RccbbnjOvvx72FeAh-L5hge9aVEmdkx9tGVrLt-CeyY4y1lRZCfiZfUjoWqFquduTt0VuMGZzPC32ewWc3OAvZBU_DQCeMNowF-ieKI9ocy-dIbfD9bDMULh1CpK_wstBtB-rBhzwfsBrcOGJPpzAuJ4zv7zacppBcxkTntGrewILJgafODxix6H0l5wOMCS8_zgvyeH_39_ZX9fDn5-_bHw-VlVLlqhFaCtbLxvaqllrXyJpaKqh5zRAOHRccel0uIJXiDVPYa6WHruMNaAa1vCDfNt0phucZUzbHMEdfRhqh2obrTom1S21dNoaUIg5miu4EcTGcmTV7czSbb7Nmb1hXShTa9UbD4uDFYTTJutVd72IJ0fTB_V_gH2MSkl8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2487169425</pqid></control><display><type>article</type><title>Uncertainty quantification of percolating electrical conductance for wavy carbon nanotube-filled polymer nanocomposites using Bayesian inference</title><source>Elsevier ScienceDirect Journals</source><creator>Doh, Jaehyeok ; Park, Sang-In ; Yang, Qing ; Raghavan, Nagarajan</creator><creatorcontrib>Doh, Jaehyeok ; Park, Sang-In ; Yang, Qing ; Raghavan, Nagarajan</creatorcontrib><description>This research focuses on the uncertainty quantification of electrical percolation behavior in wavy carbon nanotube (CNT)-filled polymer nanocomposites with a three-dimensional representative volume element accounting for both tunneling resistance (quantum carrier tunneling) and stochasticity in CNT waviness. The developed percolation model is validated with existing experimental data, and model parameters for electrical conductance converge to the optimal value with Markov Chain Monte Carlo (MCMC) based on Bayesian inference. The predicted 95% confidence interval of electrical conductance indicates a different trend between two-and three-parameters of the electrical conductance model. The main trend of correlation between the percolation threshold (φc) and a parameter of the phase transition (critical exponent, t) indicates a statistically linear relationship via evaluation of the Pearson correlation coefficient. Moreover, the correlation between intrinsic conductance of CNTs (σo) and t also strongly affect the magnitude and slope of electrical conductance in uncertainty quantification. This work can contribute to a robust and reliable design of the PNC considering the physical uncertainty satisfying the target electrical performance through controlling φc, σo, and t.
[Display omitted]
•Waviness of CNT and quantum tunneling resistance are accounted for in developed percolation model.•Our percolation model is verified with existing experimental and numerical data sets.•The impact on electrical percolation threshold for varying degrees of CNT waviness is probed.•Uncertainty Quantification (UQ) for electrical conductance is conducted with MCMC based on Bayesian inference.•The 95% confidence interval for PNC conductance is predicted via our UQ framework.</description><identifier>ISSN: 0008-6223</identifier><identifier>EISSN: 1873-3891</identifier><identifier>DOI: 10.1016/j.carbon.2020.09.092</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Bayesian analysis ; Bayesian inference ; Carbon ; Carbon nanotube (CNT) waviness ; Carbon nanotubes ; Conductivity ; Confidence intervals ; Correlation coefficients ; Electrical percolation behavior ; Electrical resistance ; Markov chains ; Mathematical models ; Monte Carlo simulation ; Nanocomposites ; Nanotubes ; Parameters ; Pearson correlation coefficient ; Percolation ; Phase transitions ; Polymer nanocomposites (PNC) ; Polymers ; Resistance ; Statistical inference ; Studies ; Uncertainty ; Uncertainty quantification (UQ) ; Waviness</subject><ispartof>Carbon (New York), 2021-02, Vol.172, p.308-323</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier BV Feb 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-726320d37cd453665e07534a5150eab9121ad6ab9a3441704ed646f9917a60a53</citedby><cites>FETCH-LOGICAL-c334t-726320d37cd453665e07534a5150eab9121ad6ab9a3441704ed646f9917a60a53</cites><orcidid>0000-0001-8195-8357 ; 0000-0003-4511-6907 ; 0000-0001-6735-3108</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.carbon.2020.09.092$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids></links><search><creatorcontrib>Doh, Jaehyeok</creatorcontrib><creatorcontrib>Park, Sang-In</creatorcontrib><creatorcontrib>Yang, Qing</creatorcontrib><creatorcontrib>Raghavan, Nagarajan</creatorcontrib><title>Uncertainty quantification of percolating electrical conductance for wavy carbon nanotube-filled polymer nanocomposites using Bayesian inference</title><title>Carbon (New York)</title><description>This research focuses on the uncertainty quantification of electrical percolation behavior in wavy carbon nanotube (CNT)-filled polymer nanocomposites with a three-dimensional representative volume element accounting for both tunneling resistance (quantum carrier tunneling) and stochasticity in CNT waviness. The developed percolation model is validated with existing experimental data, and model parameters for electrical conductance converge to the optimal value with Markov Chain Monte Carlo (MCMC) based on Bayesian inference. The predicted 95% confidence interval of electrical conductance indicates a different trend between two-and three-parameters of the electrical conductance model. The main trend of correlation between the percolation threshold (φc) and a parameter of the phase transition (critical exponent, t) indicates a statistically linear relationship via evaluation of the Pearson correlation coefficient. Moreover, the correlation between intrinsic conductance of CNTs (σo) and t also strongly affect the magnitude and slope of electrical conductance in uncertainty quantification. This work can contribute to a robust and reliable design of the PNC considering the physical uncertainty satisfying the target electrical performance through controlling φc, σo, and t.
[Display omitted]
•Waviness of CNT and quantum tunneling resistance are accounted for in developed percolation model.•Our percolation model is verified with existing experimental and numerical data sets.•The impact on electrical percolation threshold for varying degrees of CNT waviness is probed.•Uncertainty Quantification (UQ) for electrical conductance is conducted with MCMC based on Bayesian inference.•The 95% confidence interval for PNC conductance is predicted via our UQ framework.</description><subject>Bayesian analysis</subject><subject>Bayesian inference</subject><subject>Carbon</subject><subject>Carbon nanotube (CNT) waviness</subject><subject>Carbon nanotubes</subject><subject>Conductivity</subject><subject>Confidence intervals</subject><subject>Correlation coefficients</subject><subject>Electrical percolation behavior</subject><subject>Electrical resistance</subject><subject>Markov chains</subject><subject>Mathematical models</subject><subject>Monte Carlo simulation</subject><subject>Nanocomposites</subject><subject>Nanotubes</subject><subject>Parameters</subject><subject>Pearson correlation coefficient</subject><subject>Percolation</subject><subject>Phase transitions</subject><subject>Polymer nanocomposites (PNC)</subject><subject>Polymers</subject><subject>Resistance</subject><subject>Statistical inference</subject><subject>Studies</subject><subject>Uncertainty</subject><subject>Uncertainty quantification (UQ)</subject><subject>Waviness</subject><issn>0008-6223</issn><issn>1873-3891</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9UE1r3TAQFKGBvqb5BzkIevarvizbl0ATkrYQ6KU5i33yOujhJzmSnOB_kZ9cOc65sCCNtDO7M4RccbbnjOvvx72FeAh-L5hge9aVEmdkx9tGVrLt-CeyY4y1lRZCfiZfUjoWqFquduTt0VuMGZzPC32ewWc3OAvZBU_DQCeMNowF-ieKI9ocy-dIbfD9bDMULh1CpK_wstBtB-rBhzwfsBrcOGJPpzAuJ4zv7zacppBcxkTntGrewILJgafODxix6H0l5wOMCS8_zgvyeH_39_ZX9fDn5-_bHw-VlVLlqhFaCtbLxvaqllrXyJpaKqh5zRAOHRccel0uIJXiDVPYa6WHruMNaAa1vCDfNt0phucZUzbHMEdfRhqh2obrTom1S21dNoaUIg5miu4EcTGcmTV7czSbb7Nmb1hXShTa9UbD4uDFYTTJutVd72IJ0fTB_V_gH2MSkl8</recordid><startdate>202102</startdate><enddate>202102</enddate><creator>Doh, Jaehyeok</creator><creator>Park, Sang-In</creator><creator>Yang, Qing</creator><creator>Raghavan, Nagarajan</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0001-8195-8357</orcidid><orcidid>https://orcid.org/0000-0003-4511-6907</orcidid><orcidid>https://orcid.org/0000-0001-6735-3108</orcidid></search><sort><creationdate>202102</creationdate><title>Uncertainty quantification of percolating electrical conductance for wavy carbon nanotube-filled polymer nanocomposites using Bayesian inference</title><author>Doh, Jaehyeok ; Park, Sang-In ; Yang, Qing ; Raghavan, Nagarajan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-726320d37cd453665e07534a5150eab9121ad6ab9a3441704ed646f9917a60a53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Bayesian analysis</topic><topic>Bayesian inference</topic><topic>Carbon</topic><topic>Carbon nanotube (CNT) waviness</topic><topic>Carbon nanotubes</topic><topic>Conductivity</topic><topic>Confidence intervals</topic><topic>Correlation coefficients</topic><topic>Electrical percolation behavior</topic><topic>Electrical resistance</topic><topic>Markov chains</topic><topic>Mathematical models</topic><topic>Monte Carlo simulation</topic><topic>Nanocomposites</topic><topic>Nanotubes</topic><topic>Parameters</topic><topic>Pearson correlation coefficient</topic><topic>Percolation</topic><topic>Phase transitions</topic><topic>Polymer nanocomposites (PNC)</topic><topic>Polymers</topic><topic>Resistance</topic><topic>Statistical inference</topic><topic>Studies</topic><topic>Uncertainty</topic><topic>Uncertainty quantification (UQ)</topic><topic>Waviness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Doh, Jaehyeok</creatorcontrib><creatorcontrib>Park, Sang-In</creatorcontrib><creatorcontrib>Yang, Qing</creatorcontrib><creatorcontrib>Raghavan, Nagarajan</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Carbon (New York)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Doh, Jaehyeok</au><au>Park, Sang-In</au><au>Yang, Qing</au><au>Raghavan, Nagarajan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Uncertainty quantification of percolating electrical conductance for wavy carbon nanotube-filled polymer nanocomposites using Bayesian inference</atitle><jtitle>Carbon (New York)</jtitle><date>2021-02</date><risdate>2021</risdate><volume>172</volume><spage>308</spage><epage>323</epage><pages>308-323</pages><issn>0008-6223</issn><eissn>1873-3891</eissn><abstract>This research focuses on the uncertainty quantification of electrical percolation behavior in wavy carbon nanotube (CNT)-filled polymer nanocomposites with a three-dimensional representative volume element accounting for both tunneling resistance (quantum carrier tunneling) and stochasticity in CNT waviness. The developed percolation model is validated with existing experimental data, and model parameters for electrical conductance converge to the optimal value with Markov Chain Monte Carlo (MCMC) based on Bayesian inference. The predicted 95% confidence interval of electrical conductance indicates a different trend between two-and three-parameters of the electrical conductance model. The main trend of correlation between the percolation threshold (φc) and a parameter of the phase transition (critical exponent, t) indicates a statistically linear relationship via evaluation of the Pearson correlation coefficient. Moreover, the correlation between intrinsic conductance of CNTs (σo) and t also strongly affect the magnitude and slope of electrical conductance in uncertainty quantification. This work can contribute to a robust and reliable design of the PNC considering the physical uncertainty satisfying the target electrical performance through controlling φc, σo, and t.
[Display omitted]
•Waviness of CNT and quantum tunneling resistance are accounted for in developed percolation model.•Our percolation model is verified with existing experimental and numerical data sets.•The impact on electrical percolation threshold for varying degrees of CNT waviness is probed.•Uncertainty Quantification (UQ) for electrical conductance is conducted with MCMC based on Bayesian inference.•The 95% confidence interval for PNC conductance is predicted via our UQ framework.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.carbon.2020.09.092</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-8195-8357</orcidid><orcidid>https://orcid.org/0000-0003-4511-6907</orcidid><orcidid>https://orcid.org/0000-0001-6735-3108</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0008-6223 |
ispartof | Carbon (New York), 2021-02, Vol.172, p.308-323 |
issn | 0008-6223 1873-3891 |
language | eng |
recordid | cdi_proquest_journals_2487169425 |
source | Elsevier ScienceDirect Journals |
subjects | Bayesian analysis Bayesian inference Carbon Carbon nanotube (CNT) waviness Carbon nanotubes Conductivity Confidence intervals Correlation coefficients Electrical percolation behavior Electrical resistance Markov chains Mathematical models Monte Carlo simulation Nanocomposites Nanotubes Parameters Pearson correlation coefficient Percolation Phase transitions Polymer nanocomposites (PNC) Polymers Resistance Statistical inference Studies Uncertainty Uncertainty quantification (UQ) Waviness |
title | Uncertainty quantification of percolating electrical conductance for wavy carbon nanotube-filled polymer nanocomposites using Bayesian inference |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T17%3A41%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Uncertainty%20quantification%20of%20percolating%20electrical%20conductance%20for%20wavy%20carbon%20nanotube-filled%20polymer%20nanocomposites%20using%20Bayesian%20inference&rft.jtitle=Carbon%20(New%20York)&rft.au=Doh,%20Jaehyeok&rft.date=2021-02&rft.volume=172&rft.spage=308&rft.epage=323&rft.pages=308-323&rft.issn=0008-6223&rft.eissn=1873-3891&rft_id=info:doi/10.1016/j.carbon.2020.09.092&rft_dat=%3Cproquest_cross%3E2487169425%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2487169425&rft_id=info:pmid/&rft_els_id=S000862232030960X&rfr_iscdi=true |