Uncertainty quantification of percolating electrical conductance for wavy carbon nanotube-filled polymer nanocomposites using Bayesian inference

This research focuses on the uncertainty quantification of electrical percolation behavior in wavy carbon nanotube (CNT)-filled polymer nanocomposites with a three-dimensional representative volume element accounting for both tunneling resistance (quantum carrier tunneling) and stochasticity in CNT...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Carbon (New York) 2021-02, Vol.172, p.308-323
Hauptverfasser: Doh, Jaehyeok, Park, Sang-In, Yang, Qing, Raghavan, Nagarajan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 323
container_issue
container_start_page 308
container_title Carbon (New York)
container_volume 172
creator Doh, Jaehyeok
Park, Sang-In
Yang, Qing
Raghavan, Nagarajan
description This research focuses on the uncertainty quantification of electrical percolation behavior in wavy carbon nanotube (CNT)-filled polymer nanocomposites with a three-dimensional representative volume element accounting for both tunneling resistance (quantum carrier tunneling) and stochasticity in CNT waviness. The developed percolation model is validated with existing experimental data, and model parameters for electrical conductance converge to the optimal value with Markov Chain Monte Carlo (MCMC) based on Bayesian inference. The predicted 95% confidence interval of electrical conductance indicates a different trend between two-and three-parameters of the electrical conductance model. The main trend of correlation between the percolation threshold (φc) and a parameter of the phase transition (critical exponent, t) indicates a statistically linear relationship via evaluation of the Pearson correlation coefficient. Moreover, the correlation between intrinsic conductance of CNTs (σo) and t also strongly affect the magnitude and slope of electrical conductance in uncertainty quantification. This work can contribute to a robust and reliable design of the PNC considering the physical uncertainty satisfying the target electrical performance through controlling φc, σo, and t. [Display omitted] •Waviness of CNT and quantum tunneling resistance are accounted for in developed percolation model.•Our percolation model is verified with existing experimental and numerical data sets.•The impact on electrical percolation threshold for varying degrees of CNT waviness is probed.•Uncertainty Quantification (UQ) for electrical conductance is conducted with MCMC based on Bayesian inference.•The 95% confidence interval for PNC conductance is predicted via our UQ framework.
doi_str_mv 10.1016/j.carbon.2020.09.092
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2487169425</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S000862232030960X</els_id><sourcerecordid>2487169425</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-726320d37cd453665e07534a5150eab9121ad6ab9a3441704ed646f9917a60a53</originalsourceid><addsrcrecordid>eNp9UE1r3TAQFKGBvqb5BzkIevarvizbl0ATkrYQ6KU5i33yOujhJzmSnOB_kZ9cOc65sCCNtDO7M4RccbbnjOvvx72FeAh-L5hge9aVEmdkx9tGVrLt-CeyY4y1lRZCfiZfUjoWqFquduTt0VuMGZzPC32ewWc3OAvZBU_DQCeMNowF-ieKI9ocy-dIbfD9bDMULh1CpK_wstBtB-rBhzwfsBrcOGJPpzAuJ4zv7zacppBcxkTntGrewILJgafODxix6H0l5wOMCS8_zgvyeH_39_ZX9fDn5-_bHw-VlVLlqhFaCtbLxvaqllrXyJpaKqh5zRAOHRccel0uIJXiDVPYa6WHruMNaAa1vCDfNt0phucZUzbHMEdfRhqh2obrTom1S21dNoaUIg5miu4EcTGcmTV7czSbb7Nmb1hXShTa9UbD4uDFYTTJutVd72IJ0fTB_V_gH2MSkl8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2487169425</pqid></control><display><type>article</type><title>Uncertainty quantification of percolating electrical conductance for wavy carbon nanotube-filled polymer nanocomposites using Bayesian inference</title><source>Elsevier ScienceDirect Journals</source><creator>Doh, Jaehyeok ; Park, Sang-In ; Yang, Qing ; Raghavan, Nagarajan</creator><creatorcontrib>Doh, Jaehyeok ; Park, Sang-In ; Yang, Qing ; Raghavan, Nagarajan</creatorcontrib><description>This research focuses on the uncertainty quantification of electrical percolation behavior in wavy carbon nanotube (CNT)-filled polymer nanocomposites with a three-dimensional representative volume element accounting for both tunneling resistance (quantum carrier tunneling) and stochasticity in CNT waviness. The developed percolation model is validated with existing experimental data, and model parameters for electrical conductance converge to the optimal value with Markov Chain Monte Carlo (MCMC) based on Bayesian inference. The predicted 95% confidence interval of electrical conductance indicates a different trend between two-and three-parameters of the electrical conductance model. The main trend of correlation between the percolation threshold (φc) and a parameter of the phase transition (critical exponent, t) indicates a statistically linear relationship via evaluation of the Pearson correlation coefficient. Moreover, the correlation between intrinsic conductance of CNTs (σo) and t also strongly affect the magnitude and slope of electrical conductance in uncertainty quantification. This work can contribute to a robust and reliable design of the PNC considering the physical uncertainty satisfying the target electrical performance through controlling φc, σo, and t. [Display omitted] •Waviness of CNT and quantum tunneling resistance are accounted for in developed percolation model.•Our percolation model is verified with existing experimental and numerical data sets.•The impact on electrical percolation threshold for varying degrees of CNT waviness is probed.•Uncertainty Quantification (UQ) for electrical conductance is conducted with MCMC based on Bayesian inference.•The 95% confidence interval for PNC conductance is predicted via our UQ framework.</description><identifier>ISSN: 0008-6223</identifier><identifier>EISSN: 1873-3891</identifier><identifier>DOI: 10.1016/j.carbon.2020.09.092</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Bayesian analysis ; Bayesian inference ; Carbon ; Carbon nanotube (CNT) waviness ; Carbon nanotubes ; Conductivity ; Confidence intervals ; Correlation coefficients ; Electrical percolation behavior ; Electrical resistance ; Markov chains ; Mathematical models ; Monte Carlo simulation ; Nanocomposites ; Nanotubes ; Parameters ; Pearson correlation coefficient ; Percolation ; Phase transitions ; Polymer nanocomposites (PNC) ; Polymers ; Resistance ; Statistical inference ; Studies ; Uncertainty ; Uncertainty quantification (UQ) ; Waviness</subject><ispartof>Carbon (New York), 2021-02, Vol.172, p.308-323</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier BV Feb 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-726320d37cd453665e07534a5150eab9121ad6ab9a3441704ed646f9917a60a53</citedby><cites>FETCH-LOGICAL-c334t-726320d37cd453665e07534a5150eab9121ad6ab9a3441704ed646f9917a60a53</cites><orcidid>0000-0001-8195-8357 ; 0000-0003-4511-6907 ; 0000-0001-6735-3108</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.carbon.2020.09.092$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids></links><search><creatorcontrib>Doh, Jaehyeok</creatorcontrib><creatorcontrib>Park, Sang-In</creatorcontrib><creatorcontrib>Yang, Qing</creatorcontrib><creatorcontrib>Raghavan, Nagarajan</creatorcontrib><title>Uncertainty quantification of percolating electrical conductance for wavy carbon nanotube-filled polymer nanocomposites using Bayesian inference</title><title>Carbon (New York)</title><description>This research focuses on the uncertainty quantification of electrical percolation behavior in wavy carbon nanotube (CNT)-filled polymer nanocomposites with a three-dimensional representative volume element accounting for both tunneling resistance (quantum carrier tunneling) and stochasticity in CNT waviness. The developed percolation model is validated with existing experimental data, and model parameters for electrical conductance converge to the optimal value with Markov Chain Monte Carlo (MCMC) based on Bayesian inference. The predicted 95% confidence interval of electrical conductance indicates a different trend between two-and three-parameters of the electrical conductance model. The main trend of correlation between the percolation threshold (φc) and a parameter of the phase transition (critical exponent, t) indicates a statistically linear relationship via evaluation of the Pearson correlation coefficient. Moreover, the correlation between intrinsic conductance of CNTs (σo) and t also strongly affect the magnitude and slope of electrical conductance in uncertainty quantification. This work can contribute to a robust and reliable design of the PNC considering the physical uncertainty satisfying the target electrical performance through controlling φc, σo, and t. [Display omitted] •Waviness of CNT and quantum tunneling resistance are accounted for in developed percolation model.•Our percolation model is verified with existing experimental and numerical data sets.•The impact on electrical percolation threshold for varying degrees of CNT waviness is probed.•Uncertainty Quantification (UQ) for electrical conductance is conducted with MCMC based on Bayesian inference.•The 95% confidence interval for PNC conductance is predicted via our UQ framework.</description><subject>Bayesian analysis</subject><subject>Bayesian inference</subject><subject>Carbon</subject><subject>Carbon nanotube (CNT) waviness</subject><subject>Carbon nanotubes</subject><subject>Conductivity</subject><subject>Confidence intervals</subject><subject>Correlation coefficients</subject><subject>Electrical percolation behavior</subject><subject>Electrical resistance</subject><subject>Markov chains</subject><subject>Mathematical models</subject><subject>Monte Carlo simulation</subject><subject>Nanocomposites</subject><subject>Nanotubes</subject><subject>Parameters</subject><subject>Pearson correlation coefficient</subject><subject>Percolation</subject><subject>Phase transitions</subject><subject>Polymer nanocomposites (PNC)</subject><subject>Polymers</subject><subject>Resistance</subject><subject>Statistical inference</subject><subject>Studies</subject><subject>Uncertainty</subject><subject>Uncertainty quantification (UQ)</subject><subject>Waviness</subject><issn>0008-6223</issn><issn>1873-3891</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9UE1r3TAQFKGBvqb5BzkIevarvizbl0ATkrYQ6KU5i33yOujhJzmSnOB_kZ9cOc65sCCNtDO7M4RccbbnjOvvx72FeAh-L5hge9aVEmdkx9tGVrLt-CeyY4y1lRZCfiZfUjoWqFquduTt0VuMGZzPC32ewWc3OAvZBU_DQCeMNowF-ieKI9ocy-dIbfD9bDMULh1CpK_wstBtB-rBhzwfsBrcOGJPpzAuJ4zv7zacppBcxkTntGrewILJgafODxix6H0l5wOMCS8_zgvyeH_39_ZX9fDn5-_bHw-VlVLlqhFaCtbLxvaqllrXyJpaKqh5zRAOHRccel0uIJXiDVPYa6WHruMNaAa1vCDfNt0phucZUzbHMEdfRhqh2obrTom1S21dNoaUIg5miu4EcTGcmTV7czSbb7Nmb1hXShTa9UbD4uDFYTTJutVd72IJ0fTB_V_gH2MSkl8</recordid><startdate>202102</startdate><enddate>202102</enddate><creator>Doh, Jaehyeok</creator><creator>Park, Sang-In</creator><creator>Yang, Qing</creator><creator>Raghavan, Nagarajan</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0001-8195-8357</orcidid><orcidid>https://orcid.org/0000-0003-4511-6907</orcidid><orcidid>https://orcid.org/0000-0001-6735-3108</orcidid></search><sort><creationdate>202102</creationdate><title>Uncertainty quantification of percolating electrical conductance for wavy carbon nanotube-filled polymer nanocomposites using Bayesian inference</title><author>Doh, Jaehyeok ; Park, Sang-In ; Yang, Qing ; Raghavan, Nagarajan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-726320d37cd453665e07534a5150eab9121ad6ab9a3441704ed646f9917a60a53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Bayesian analysis</topic><topic>Bayesian inference</topic><topic>Carbon</topic><topic>Carbon nanotube (CNT) waviness</topic><topic>Carbon nanotubes</topic><topic>Conductivity</topic><topic>Confidence intervals</topic><topic>Correlation coefficients</topic><topic>Electrical percolation behavior</topic><topic>Electrical resistance</topic><topic>Markov chains</topic><topic>Mathematical models</topic><topic>Monte Carlo simulation</topic><topic>Nanocomposites</topic><topic>Nanotubes</topic><topic>Parameters</topic><topic>Pearson correlation coefficient</topic><topic>Percolation</topic><topic>Phase transitions</topic><topic>Polymer nanocomposites (PNC)</topic><topic>Polymers</topic><topic>Resistance</topic><topic>Statistical inference</topic><topic>Studies</topic><topic>Uncertainty</topic><topic>Uncertainty quantification (UQ)</topic><topic>Waviness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Doh, Jaehyeok</creatorcontrib><creatorcontrib>Park, Sang-In</creatorcontrib><creatorcontrib>Yang, Qing</creatorcontrib><creatorcontrib>Raghavan, Nagarajan</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Carbon (New York)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Doh, Jaehyeok</au><au>Park, Sang-In</au><au>Yang, Qing</au><au>Raghavan, Nagarajan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Uncertainty quantification of percolating electrical conductance for wavy carbon nanotube-filled polymer nanocomposites using Bayesian inference</atitle><jtitle>Carbon (New York)</jtitle><date>2021-02</date><risdate>2021</risdate><volume>172</volume><spage>308</spage><epage>323</epage><pages>308-323</pages><issn>0008-6223</issn><eissn>1873-3891</eissn><abstract>This research focuses on the uncertainty quantification of electrical percolation behavior in wavy carbon nanotube (CNT)-filled polymer nanocomposites with a three-dimensional representative volume element accounting for both tunneling resistance (quantum carrier tunneling) and stochasticity in CNT waviness. The developed percolation model is validated with existing experimental data, and model parameters for electrical conductance converge to the optimal value with Markov Chain Monte Carlo (MCMC) based on Bayesian inference. The predicted 95% confidence interval of electrical conductance indicates a different trend between two-and three-parameters of the electrical conductance model. The main trend of correlation between the percolation threshold (φc) and a parameter of the phase transition (critical exponent, t) indicates a statistically linear relationship via evaluation of the Pearson correlation coefficient. Moreover, the correlation between intrinsic conductance of CNTs (σo) and t also strongly affect the magnitude and slope of electrical conductance in uncertainty quantification. This work can contribute to a robust and reliable design of the PNC considering the physical uncertainty satisfying the target electrical performance through controlling φc, σo, and t. [Display omitted] •Waviness of CNT and quantum tunneling resistance are accounted for in developed percolation model.•Our percolation model is verified with existing experimental and numerical data sets.•The impact on electrical percolation threshold for varying degrees of CNT waviness is probed.•Uncertainty Quantification (UQ) for electrical conductance is conducted with MCMC based on Bayesian inference.•The 95% confidence interval for PNC conductance is predicted via our UQ framework.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.carbon.2020.09.092</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-8195-8357</orcidid><orcidid>https://orcid.org/0000-0003-4511-6907</orcidid><orcidid>https://orcid.org/0000-0001-6735-3108</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0008-6223
ispartof Carbon (New York), 2021-02, Vol.172, p.308-323
issn 0008-6223
1873-3891
language eng
recordid cdi_proquest_journals_2487169425
source Elsevier ScienceDirect Journals
subjects Bayesian analysis
Bayesian inference
Carbon
Carbon nanotube (CNT) waviness
Carbon nanotubes
Conductivity
Confidence intervals
Correlation coefficients
Electrical percolation behavior
Electrical resistance
Markov chains
Mathematical models
Monte Carlo simulation
Nanocomposites
Nanotubes
Parameters
Pearson correlation coefficient
Percolation
Phase transitions
Polymer nanocomposites (PNC)
Polymers
Resistance
Statistical inference
Studies
Uncertainty
Uncertainty quantification (UQ)
Waviness
title Uncertainty quantification of percolating electrical conductance for wavy carbon nanotube-filled polymer nanocomposites using Bayesian inference
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T17%3A41%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Uncertainty%20quantification%20of%20percolating%20electrical%20conductance%20for%20wavy%20carbon%20nanotube-filled%20polymer%20nanocomposites%20using%20Bayesian%20inference&rft.jtitle=Carbon%20(New%20York)&rft.au=Doh,%20Jaehyeok&rft.date=2021-02&rft.volume=172&rft.spage=308&rft.epage=323&rft.pages=308-323&rft.issn=0008-6223&rft.eissn=1873-3891&rft_id=info:doi/10.1016/j.carbon.2020.09.092&rft_dat=%3Cproquest_cross%3E2487169425%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2487169425&rft_id=info:pmid/&rft_els_id=S000862232030960X&rfr_iscdi=true