Development of high-performance hybrid ANN-finite volume scheme (ANN-FVS) for simulation of pharmaceutical continuous granulation

•Continuous wet granulation of pharmaceutical formulations.•Compartmental modelling of twin screw granulation using population balance.•Development of hybrid ANN-finite volume scheme to solve the model.•Studying the effect of numerical method for solving compartmental population balance models. A hy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical engineering research & design 2020-11, Vol.163, p.320-326
Hauptverfasser: Ismail, Hamza Y., Singh, Mehakpreet, Shirazian, Saeed, Albadarin, Ahmad B., Walker, Gavin M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 326
container_issue
container_start_page 320
container_title Chemical engineering research & design
container_volume 163
creator Ismail, Hamza Y.
Singh, Mehakpreet
Shirazian, Saeed
Albadarin, Ahmad B.
Walker, Gavin M.
description •Continuous wet granulation of pharmaceutical formulations.•Compartmental modelling of twin screw granulation using population balance.•Development of hybrid ANN-finite volume scheme to solve the model.•Studying the effect of numerical method for solving compartmental population balance models. A hybrid model was developed for simulation of continuous wet granulation of pharmaceutical formulations via twin-screw granulator. The model was based on population balance model (PBM) for prediction of particle size distribution, while artificial neural network (ANN) was used for estimation of mean residence time which is required for numerical solution of PBM. A new numerical scheme based on finite volume approach was developed for solution of one dimensional PBM to predict granule size distribution obtained in a twin-screw granulator. The model takes into account liquid and feed flow rates, and screw speed, while the granule size distribution is the model's main output. Aggregation and breakage were considered as the main mechanisms in the process, and the model was developed and solved for different zones of extruder, i.e. conveying and kneading ones. The model's predictions were validated through comparing with experimental data collected using a 12mm twin-screw extruder for granulation of microcrystalline cellulose. The results indicated that the model is facile, robust and valid, which can predict the performance of twin-screw granulator for pharmaceutical formulations.
doi_str_mv 10.1016/j.cherd.2020.09.002
format Article
fullrecord <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_proquest_journals_2487169340</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S026387622030455X</els_id><sourcerecordid>2487169340</sourcerecordid><originalsourceid>FETCH-LOGICAL-c442t-a9dba58692ee11594057bccb6d3d5ec6aa5a2b8078f7ad51652df6af049e064e3</originalsourceid><addsrcrecordid>eNqNkD2P1DAQhiMEEsvBL6CxRANCCRMncZyC4rTHAdLpKPhoLceeXLxK7GA7i67kn-PcrigR1RTzPu-Mnix7WUJRQsneHQo1otcFBQoFdAUAfZTtyrau86ph1eNsB5RVOW8ZfZo9C-EAAGnLd9nvKzzi5JYZbSRuIKO5G_MF_eD8LK1CMt733mhyeXubD8aaiOTopnVGEtLJNF5vm-sfX9-QhJBg5nWS0Ti7lS2jTC0K12iUnIhyNhq7ujWQOy_tOfg8ezLIKeCL87zIvl9_-Lb_lN98-fh5f3mTq7qmMZed7mXDWUcRy7LpamjaXqme6Uo3qJiUjaQ9h5YPrdRNyRqqByYHqDsEVmN1kb069S7e_VwxRHFwq7fppKA1b0vWVTWkVHVKKe9C8DiIxZtZ-ntRgthci4N4cC021wI6kVwn6u2J-oW9G4IymNT9JZPshtOKp36AarvB_z-9N_FB096tNib0_QnFZOpo0Iszro1HFYV25p-P_gE3CKtk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2487169340</pqid></control><display><type>article</type><title>Development of high-performance hybrid ANN-finite volume scheme (ANN-FVS) for simulation of pharmaceutical continuous granulation</title><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>Access via ScienceDirect (Elsevier)</source><creator>Ismail, Hamza Y. ; Singh, Mehakpreet ; Shirazian, Saeed ; Albadarin, Ahmad B. ; Walker, Gavin M.</creator><creatorcontrib>Ismail, Hamza Y. ; Singh, Mehakpreet ; Shirazian, Saeed ; Albadarin, Ahmad B. ; Walker, Gavin M.</creatorcontrib><description>•Continuous wet granulation of pharmaceutical formulations.•Compartmental modelling of twin screw granulation using population balance.•Development of hybrid ANN-finite volume scheme to solve the model.•Studying the effect of numerical method for solving compartmental population balance models. A hybrid model was developed for simulation of continuous wet granulation of pharmaceutical formulations via twin-screw granulator. The model was based on population balance model (PBM) for prediction of particle size distribution, while artificial neural network (ANN) was used for estimation of mean residence time which is required for numerical solution of PBM. A new numerical scheme based on finite volume approach was developed for solution of one dimensional PBM to predict granule size distribution obtained in a twin-screw granulator. The model takes into account liquid and feed flow rates, and screw speed, while the granule size distribution is the model's main output. Aggregation and breakage were considered as the main mechanisms in the process, and the model was developed and solved for different zones of extruder, i.e. conveying and kneading ones. The model's predictions were validated through comparing with experimental data collected using a 12mm twin-screw extruder for granulation of microcrystalline cellulose. The results indicated that the model is facile, robust and valid, which can predict the performance of twin-screw granulator for pharmaceutical formulations.</description><identifier>ISSN: 0263-8762</identifier><identifier>EISSN: 1744-3563</identifier><identifier>DOI: 10.1016/j.cherd.2020.09.002</identifier><language>eng</language><publisher>AMSTERDAM: Elsevier B.V</publisher><subject>Artificial neural networks ; Crystalline cellulose ; Engineering ; Engineering, Chemical ; Finite volume method ; Finite volume scheme ; Flow velocity ; Fluid dynamics ; Granular materials ; Granulation ; Granulators ; Mathematical models ; Neural networks ; Particle size ; Particle size distribution ; Pharmaceuticals ; Population balance model ; Population balance models ; Process modelling ; Robustness (mathematics) ; Science &amp; Technology ; Simulation ; Technology ; Twin screw extruders ; Twin-screw granulation</subject><ispartof>Chemical engineering research &amp; design, 2020-11, Vol.163, p.320-326</ispartof><rights>2020 Institution of Chemical Engineers</rights><rights>Copyright Elsevier Science Ltd. Nov 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>33</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000582383400030</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c442t-a9dba58692ee11594057bccb6d3d5ec6aa5a2b8078f7ad51652df6af049e064e3</citedby><cites>FETCH-LOGICAL-c442t-a9dba58692ee11594057bccb6d3d5ec6aa5a2b8078f7ad51652df6af049e064e3</cites><orcidid>0000-0002-6392-6068</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cherd.2020.09.002$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>315,782,786,3554,27933,27934,28257,46004</link.rule.ids></links><search><creatorcontrib>Ismail, Hamza Y.</creatorcontrib><creatorcontrib>Singh, Mehakpreet</creatorcontrib><creatorcontrib>Shirazian, Saeed</creatorcontrib><creatorcontrib>Albadarin, Ahmad B.</creatorcontrib><creatorcontrib>Walker, Gavin M.</creatorcontrib><title>Development of high-performance hybrid ANN-finite volume scheme (ANN-FVS) for simulation of pharmaceutical continuous granulation</title><title>Chemical engineering research &amp; design</title><addtitle>CHEM ENG RES DES</addtitle><description>•Continuous wet granulation of pharmaceutical formulations.•Compartmental modelling of twin screw granulation using population balance.•Development of hybrid ANN-finite volume scheme to solve the model.•Studying the effect of numerical method for solving compartmental population balance models. A hybrid model was developed for simulation of continuous wet granulation of pharmaceutical formulations via twin-screw granulator. The model was based on population balance model (PBM) for prediction of particle size distribution, while artificial neural network (ANN) was used for estimation of mean residence time which is required for numerical solution of PBM. A new numerical scheme based on finite volume approach was developed for solution of one dimensional PBM to predict granule size distribution obtained in a twin-screw granulator. The model takes into account liquid and feed flow rates, and screw speed, while the granule size distribution is the model's main output. Aggregation and breakage were considered as the main mechanisms in the process, and the model was developed and solved for different zones of extruder, i.e. conveying and kneading ones. The model's predictions were validated through comparing with experimental data collected using a 12mm twin-screw extruder for granulation of microcrystalline cellulose. The results indicated that the model is facile, robust and valid, which can predict the performance of twin-screw granulator for pharmaceutical formulations.</description><subject>Artificial neural networks</subject><subject>Crystalline cellulose</subject><subject>Engineering</subject><subject>Engineering, Chemical</subject><subject>Finite volume method</subject><subject>Finite volume scheme</subject><subject>Flow velocity</subject><subject>Fluid dynamics</subject><subject>Granular materials</subject><subject>Granulation</subject><subject>Granulators</subject><subject>Mathematical models</subject><subject>Neural networks</subject><subject>Particle size</subject><subject>Particle size distribution</subject><subject>Pharmaceuticals</subject><subject>Population balance model</subject><subject>Population balance models</subject><subject>Process modelling</subject><subject>Robustness (mathematics)</subject><subject>Science &amp; Technology</subject><subject>Simulation</subject><subject>Technology</subject><subject>Twin screw extruders</subject><subject>Twin-screw granulation</subject><issn>0263-8762</issn><issn>1744-3563</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><recordid>eNqNkD2P1DAQhiMEEsvBL6CxRANCCRMncZyC4rTHAdLpKPhoLceeXLxK7GA7i67kn-PcrigR1RTzPu-Mnix7WUJRQsneHQo1otcFBQoFdAUAfZTtyrau86ph1eNsB5RVOW8ZfZo9C-EAAGnLd9nvKzzi5JYZbSRuIKO5G_MF_eD8LK1CMt733mhyeXubD8aaiOTopnVGEtLJNF5vm-sfX9-QhJBg5nWS0Ti7lS2jTC0K12iUnIhyNhq7ujWQOy_tOfg8ezLIKeCL87zIvl9_-Lb_lN98-fh5f3mTq7qmMZed7mXDWUcRy7LpamjaXqme6Uo3qJiUjaQ9h5YPrdRNyRqqByYHqDsEVmN1kb069S7e_VwxRHFwq7fppKA1b0vWVTWkVHVKKe9C8DiIxZtZ-ntRgthci4N4cC021wI6kVwn6u2J-oW9G4IymNT9JZPshtOKp36AarvB_z-9N_FB096tNib0_QnFZOpo0Iszro1HFYV25p-P_gE3CKtk</recordid><startdate>202011</startdate><enddate>202011</enddate><creator>Ismail, Hamza Y.</creator><creator>Singh, Mehakpreet</creator><creator>Shirazian, Saeed</creator><creator>Albadarin, Ahmad B.</creator><creator>Walker, Gavin M.</creator><general>Elsevier B.V</general><general>Elsevier</general><general>Elsevier Science Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>95M</scope><scope>ABMOY</scope><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-6392-6068</orcidid></search><sort><creationdate>202011</creationdate><title>Development of high-performance hybrid ANN-finite volume scheme (ANN-FVS) for simulation of pharmaceutical continuous granulation</title><author>Ismail, Hamza Y. ; Singh, Mehakpreet ; Shirazian, Saeed ; Albadarin, Ahmad B. ; Walker, Gavin M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c442t-a9dba58692ee11594057bccb6d3d5ec6aa5a2b8078f7ad51652df6af049e064e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial neural networks</topic><topic>Crystalline cellulose</topic><topic>Engineering</topic><topic>Engineering, Chemical</topic><topic>Finite volume method</topic><topic>Finite volume scheme</topic><topic>Flow velocity</topic><topic>Fluid dynamics</topic><topic>Granular materials</topic><topic>Granulation</topic><topic>Granulators</topic><topic>Mathematical models</topic><topic>Neural networks</topic><topic>Particle size</topic><topic>Particle size distribution</topic><topic>Pharmaceuticals</topic><topic>Population balance model</topic><topic>Population balance models</topic><topic>Process modelling</topic><topic>Robustness (mathematics)</topic><topic>Science &amp; Technology</topic><topic>Simulation</topic><topic>Technology</topic><topic>Twin screw extruders</topic><topic>Twin-screw granulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ismail, Hamza Y.</creatorcontrib><creatorcontrib>Singh, Mehakpreet</creatorcontrib><creatorcontrib>Shirazian, Saeed</creatorcontrib><creatorcontrib>Albadarin, Ahmad B.</creatorcontrib><creatorcontrib>Walker, Gavin M.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Conference Proceedings Citation Index - Science (CPCI-S)</collection><collection>Conference Proceedings Citation Index - Science (CPCI-S) 2020</collection><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Chemical engineering research &amp; design</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ismail, Hamza Y.</au><au>Singh, Mehakpreet</au><au>Shirazian, Saeed</au><au>Albadarin, Ahmad B.</au><au>Walker, Gavin M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of high-performance hybrid ANN-finite volume scheme (ANN-FVS) for simulation of pharmaceutical continuous granulation</atitle><jtitle>Chemical engineering research &amp; design</jtitle><stitle>CHEM ENG RES DES</stitle><date>2020-11</date><risdate>2020</risdate><volume>163</volume><spage>320</spage><epage>326</epage><pages>320-326</pages><issn>0263-8762</issn><eissn>1744-3563</eissn><abstract>•Continuous wet granulation of pharmaceutical formulations.•Compartmental modelling of twin screw granulation using population balance.•Development of hybrid ANN-finite volume scheme to solve the model.•Studying the effect of numerical method for solving compartmental population balance models. A hybrid model was developed for simulation of continuous wet granulation of pharmaceutical formulations via twin-screw granulator. The model was based on population balance model (PBM) for prediction of particle size distribution, while artificial neural network (ANN) was used for estimation of mean residence time which is required for numerical solution of PBM. A new numerical scheme based on finite volume approach was developed for solution of one dimensional PBM to predict granule size distribution obtained in a twin-screw granulator. The model takes into account liquid and feed flow rates, and screw speed, while the granule size distribution is the model's main output. Aggregation and breakage were considered as the main mechanisms in the process, and the model was developed and solved for different zones of extruder, i.e. conveying and kneading ones. The model's predictions were validated through comparing with experimental data collected using a 12mm twin-screw extruder for granulation of microcrystalline cellulose. The results indicated that the model is facile, robust and valid, which can predict the performance of twin-screw granulator for pharmaceutical formulations.</abstract><cop>AMSTERDAM</cop><pub>Elsevier B.V</pub><doi>10.1016/j.cherd.2020.09.002</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-6392-6068</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0263-8762
ispartof Chemical engineering research & design, 2020-11, Vol.163, p.320-326
issn 0263-8762
1744-3563
language eng
recordid cdi_proquest_journals_2487169340
source Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Access via ScienceDirect (Elsevier)
subjects Artificial neural networks
Crystalline cellulose
Engineering
Engineering, Chemical
Finite volume method
Finite volume scheme
Flow velocity
Fluid dynamics
Granular materials
Granulation
Granulators
Mathematical models
Neural networks
Particle size
Particle size distribution
Pharmaceuticals
Population balance model
Population balance models
Process modelling
Robustness (mathematics)
Science & Technology
Simulation
Technology
Twin screw extruders
Twin-screw granulation
title Development of high-performance hybrid ANN-finite volume scheme (ANN-FVS) for simulation of pharmaceutical continuous granulation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-11-29T20%3A31%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20high-performance%20hybrid%20ANN-finite%20volume%20scheme%20(ANN-FVS)%20for%20simulation%20of%20pharmaceutical%20continuous%20granulation&rft.jtitle=Chemical%20engineering%20research%20&%20design&rft.au=Ismail,%20Hamza%20Y.&rft.date=2020-11&rft.volume=163&rft.spage=320&rft.epage=326&rft.pages=320-326&rft.issn=0263-8762&rft.eissn=1744-3563&rft_id=info:doi/10.1016/j.cherd.2020.09.002&rft_dat=%3Cproquest_webof%3E2487169340%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2487169340&rft_id=info:pmid/&rft_els_id=S026387622030455X&rfr_iscdi=true