“Rigid-stretchable” unity of shape memory composites with fluorescence via crystallinity tailoring for anti-counterfeiting application

Strength and stiffness improvement without flexibility loss in shape-memory polymers is particularly significant in creating desirable functionality and broadening practical applications. Based on crystallinity tailoring strategy, a “rigidity-stretchability”-united approach is presented to construct...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Composites science and technology 2021-01, Vol.201, p.108524, Article 108524
Hauptverfasser: Cai, Chenyang, Wei, Zechang, Huang, Yangze, Wang, Pei, Song, Jianyue, Deng, Leixin, Fu, Yu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 108524
container_title Composites science and technology
container_volume 201
creator Cai, Chenyang
Wei, Zechang
Huang, Yangze
Wang, Pei
Song, Jianyue
Deng, Leixin
Fu, Yu
description Strength and stiffness improvement without flexibility loss in shape-memory polymers is particularly significant in creating desirable functionality and broadening practical applications. Based on crystallinity tailoring strategy, a “rigidity-stretchability”-united approach is presented to construct shape-memory polyurethane composites (SMPUs) with specialized assembly for the integrated mechanical robustness and reliable deformability. Cellulose with different geometries were prepared as tailoring agent of crystallinity and structural modifier to assemble dual-networked structures of hybridized ionic- and hydrogen-bonding for the first time. Surface modification and morphology control of these celluloses were developed to manipulate the crystallization behaviors of soft segments in PU. Specifically, functionalized nanocrystal cellulose (f-NCC) with high crystallinity and needle-like geometry promoted a strong heterogeneous nucleation on the PU crystallization (the highest crystallinity, 31.3%) and contributed to 58% and 47% increase in tensile strength (48.9 MPa) and Young's modulus (237.2 MPa) without deteriorating the existent outstanding flexibility (εmax = 756.14%), thereby featuring favorable shape memory and fluorescence. Furthermore, the f-NCC based films showed the highest shape memory properties (Rr = 99.7%, Rf = 99.4%) than functionalized cellulose from cotton pulps and functionalized microcrystal cellulose based ones. The “rigid-stretchable” unity of SMPUs would lay a significant foundation of applications in the fields of larger strain sensors and show great potential in information hiding and storage fields. [Display omitted]
doi_str_mv 10.1016/j.compscitech.2020.108524
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2487168538</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0266353820323149</els_id><sourcerecordid>2487168538</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-89568f32c0c5a495eb85e377154727ba8991a7b9fc98955b9095b490ccf070b3</originalsourceid><addsrcrecordid>eNqNkEuO1DAQhi0EEs3AHYxYp7GTOLaXqMVLGgkJzd5yqsvT1UrHwXYG9W7WnGG43JyEhGbBclYl_fofqo-xt1JspZDd--MW4mnKQAXhsK1FvepG1e0ztpFG20oKJZ6zjai7rmpUY16yVzkfhRBa2XrDfj3eP3ynW9pXuSQscPD9gI_3v_k8UjnzGHg--An5CU8xnfk6FvMylvlPKgcehjkmzIAjIL8jzyGdc_HDQH_jxdMQE423PMTE_ViogjiPBVNAKqvup2kg8IXi-Jq9CH7I-ObfvWI3nz7e7L5U198-f919uK6gaW2pjFWdCU0NApRvrcLeKGy0lqrVte69sVZ63dsAdrGq3gqr-tYKgCC06Jsr9u5SO6X4Y8Zc3DHOaVwWXd0aLTuzUFpc9uKCFHNOGNyU6OTT2UnhVvLu6P4j71by7kJ-ye4uWVy-uCNMbnGthPaUEIrbR3pCyx_UvJg1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2487168538</pqid></control><display><type>article</type><title>“Rigid-stretchable” unity of shape memory composites with fluorescence via crystallinity tailoring for anti-counterfeiting application</title><source>Elsevier ScienceDirect Journals</source><creator>Cai, Chenyang ; Wei, Zechang ; Huang, Yangze ; Wang, Pei ; Song, Jianyue ; Deng, Leixin ; Fu, Yu</creator><creatorcontrib>Cai, Chenyang ; Wei, Zechang ; Huang, Yangze ; Wang, Pei ; Song, Jianyue ; Deng, Leixin ; Fu, Yu</creatorcontrib><description>Strength and stiffness improvement without flexibility loss in shape-memory polymers is particularly significant in creating desirable functionality and broadening practical applications. Based on crystallinity tailoring strategy, a “rigidity-stretchability”-united approach is presented to construct shape-memory polyurethane composites (SMPUs) with specialized assembly for the integrated mechanical robustness and reliable deformability. Cellulose with different geometries were prepared as tailoring agent of crystallinity and structural modifier to assemble dual-networked structures of hybridized ionic- and hydrogen-bonding for the first time. Surface modification and morphology control of these celluloses were developed to manipulate the crystallization behaviors of soft segments in PU. Specifically, functionalized nanocrystal cellulose (f-NCC) with high crystallinity and needle-like geometry promoted a strong heterogeneous nucleation on the PU crystallization (the highest crystallinity, 31.3%) and contributed to 58% and 47% increase in tensile strength (48.9 MPa) and Young's modulus (237.2 MPa) without deteriorating the existent outstanding flexibility (εmax = 756.14%), thereby featuring favorable shape memory and fluorescence. Furthermore, the f-NCC based films showed the highest shape memory properties (Rr = 99.7%, Rf = 99.4%) than functionalized cellulose from cotton pulps and functionalized microcrystal cellulose based ones. The “rigid-stretchable” unity of SMPUs would lay a significant foundation of applications in the fields of larger strain sensors and show great potential in information hiding and storage fields. [Display omitted]</description><identifier>ISSN: 0266-3538</identifier><identifier>EISSN: 1879-1050</identifier><identifier>DOI: 10.1016/j.compscitech.2020.108524</identifier><language>eng</language><publisher>Barking: Elsevier Ltd</publisher><subject>Cellulose ; Composite materials ; Cotton ; Crystal structure ; Crystallinity ; Crystallization ; Deformation ; Flexibility ; Fluorescence ; Formability ; Hydrogen bonding ; Mechanical properties ; Microcrystals ; Modulus of elasticity ; Multifunctional properties ; Nanocrystals ; Nucleation ; Polymer matrix composites ; Polymers ; Polyurethane resins ; Shape memory ; Smart materials ; Stiffness ; Stretchability ; Tensile strength ; Unity</subject><ispartof>Composites science and technology, 2021-01, Vol.201, p.108524, Article 108524</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jan 5, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-89568f32c0c5a495eb85e377154727ba8991a7b9fc98955b9095b490ccf070b3</citedby><cites>FETCH-LOGICAL-c349t-89568f32c0c5a495eb85e377154727ba8991a7b9fc98955b9095b490ccf070b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0266353820323149$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Cai, Chenyang</creatorcontrib><creatorcontrib>Wei, Zechang</creatorcontrib><creatorcontrib>Huang, Yangze</creatorcontrib><creatorcontrib>Wang, Pei</creatorcontrib><creatorcontrib>Song, Jianyue</creatorcontrib><creatorcontrib>Deng, Leixin</creatorcontrib><creatorcontrib>Fu, Yu</creatorcontrib><title>“Rigid-stretchable” unity of shape memory composites with fluorescence via crystallinity tailoring for anti-counterfeiting application</title><title>Composites science and technology</title><description>Strength and stiffness improvement without flexibility loss in shape-memory polymers is particularly significant in creating desirable functionality and broadening practical applications. Based on crystallinity tailoring strategy, a “rigidity-stretchability”-united approach is presented to construct shape-memory polyurethane composites (SMPUs) with specialized assembly for the integrated mechanical robustness and reliable deformability. Cellulose with different geometries were prepared as tailoring agent of crystallinity and structural modifier to assemble dual-networked structures of hybridized ionic- and hydrogen-bonding for the first time. Surface modification and morphology control of these celluloses were developed to manipulate the crystallization behaviors of soft segments in PU. Specifically, functionalized nanocrystal cellulose (f-NCC) with high crystallinity and needle-like geometry promoted a strong heterogeneous nucleation on the PU crystallization (the highest crystallinity, 31.3%) and contributed to 58% and 47% increase in tensile strength (48.9 MPa) and Young's modulus (237.2 MPa) without deteriorating the existent outstanding flexibility (εmax = 756.14%), thereby featuring favorable shape memory and fluorescence. Furthermore, the f-NCC based films showed the highest shape memory properties (Rr = 99.7%, Rf = 99.4%) than functionalized cellulose from cotton pulps and functionalized microcrystal cellulose based ones. The “rigid-stretchable” unity of SMPUs would lay a significant foundation of applications in the fields of larger strain sensors and show great potential in information hiding and storage fields. [Display omitted]</description><subject>Cellulose</subject><subject>Composite materials</subject><subject>Cotton</subject><subject>Crystal structure</subject><subject>Crystallinity</subject><subject>Crystallization</subject><subject>Deformation</subject><subject>Flexibility</subject><subject>Fluorescence</subject><subject>Formability</subject><subject>Hydrogen bonding</subject><subject>Mechanical properties</subject><subject>Microcrystals</subject><subject>Modulus of elasticity</subject><subject>Multifunctional properties</subject><subject>Nanocrystals</subject><subject>Nucleation</subject><subject>Polymer matrix composites</subject><subject>Polymers</subject><subject>Polyurethane resins</subject><subject>Shape memory</subject><subject>Smart materials</subject><subject>Stiffness</subject><subject>Stretchability</subject><subject>Tensile strength</subject><subject>Unity</subject><issn>0266-3538</issn><issn>1879-1050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqNkEuO1DAQhi0EEs3AHYxYp7GTOLaXqMVLGgkJzd5yqsvT1UrHwXYG9W7WnGG43JyEhGbBclYl_fofqo-xt1JspZDd--MW4mnKQAXhsK1FvepG1e0ztpFG20oKJZ6zjai7rmpUY16yVzkfhRBa2XrDfj3eP3ynW9pXuSQscPD9gI_3v_k8UjnzGHg--An5CU8xnfk6FvMylvlPKgcehjkmzIAjIL8jzyGdc_HDQH_jxdMQE423PMTE_ViogjiPBVNAKqvup2kg8IXi-Jq9CH7I-ObfvWI3nz7e7L5U198-f919uK6gaW2pjFWdCU0NApRvrcLeKGy0lqrVte69sVZ63dsAdrGq3gqr-tYKgCC06Jsr9u5SO6X4Y8Zc3DHOaVwWXd0aLTuzUFpc9uKCFHNOGNyU6OTT2UnhVvLu6P4j71by7kJ-ye4uWVy-uCNMbnGthPaUEIrbR3pCyx_UvJg1</recordid><startdate>20210105</startdate><enddate>20210105</enddate><creator>Cai, Chenyang</creator><creator>Wei, Zechang</creator><creator>Huang, Yangze</creator><creator>Wang, Pei</creator><creator>Song, Jianyue</creator><creator>Deng, Leixin</creator><creator>Fu, Yu</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20210105</creationdate><title>“Rigid-stretchable” unity of shape memory composites with fluorescence via crystallinity tailoring for anti-counterfeiting application</title><author>Cai, Chenyang ; Wei, Zechang ; Huang, Yangze ; Wang, Pei ; Song, Jianyue ; Deng, Leixin ; Fu, Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-89568f32c0c5a495eb85e377154727ba8991a7b9fc98955b9095b490ccf070b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Cellulose</topic><topic>Composite materials</topic><topic>Cotton</topic><topic>Crystal structure</topic><topic>Crystallinity</topic><topic>Crystallization</topic><topic>Deformation</topic><topic>Flexibility</topic><topic>Fluorescence</topic><topic>Formability</topic><topic>Hydrogen bonding</topic><topic>Mechanical properties</topic><topic>Microcrystals</topic><topic>Modulus of elasticity</topic><topic>Multifunctional properties</topic><topic>Nanocrystals</topic><topic>Nucleation</topic><topic>Polymer matrix composites</topic><topic>Polymers</topic><topic>Polyurethane resins</topic><topic>Shape memory</topic><topic>Smart materials</topic><topic>Stiffness</topic><topic>Stretchability</topic><topic>Tensile strength</topic><topic>Unity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cai, Chenyang</creatorcontrib><creatorcontrib>Wei, Zechang</creatorcontrib><creatorcontrib>Huang, Yangze</creatorcontrib><creatorcontrib>Wang, Pei</creatorcontrib><creatorcontrib>Song, Jianyue</creatorcontrib><creatorcontrib>Deng, Leixin</creatorcontrib><creatorcontrib>Fu, Yu</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Composites science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cai, Chenyang</au><au>Wei, Zechang</au><au>Huang, Yangze</au><au>Wang, Pei</au><au>Song, Jianyue</au><au>Deng, Leixin</au><au>Fu, Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>“Rigid-stretchable” unity of shape memory composites with fluorescence via crystallinity tailoring for anti-counterfeiting application</atitle><jtitle>Composites science and technology</jtitle><date>2021-01-05</date><risdate>2021</risdate><volume>201</volume><spage>108524</spage><pages>108524-</pages><artnum>108524</artnum><issn>0266-3538</issn><eissn>1879-1050</eissn><abstract>Strength and stiffness improvement without flexibility loss in shape-memory polymers is particularly significant in creating desirable functionality and broadening practical applications. Based on crystallinity tailoring strategy, a “rigidity-stretchability”-united approach is presented to construct shape-memory polyurethane composites (SMPUs) with specialized assembly for the integrated mechanical robustness and reliable deformability. Cellulose with different geometries were prepared as tailoring agent of crystallinity and structural modifier to assemble dual-networked structures of hybridized ionic- and hydrogen-bonding for the first time. Surface modification and morphology control of these celluloses were developed to manipulate the crystallization behaviors of soft segments in PU. Specifically, functionalized nanocrystal cellulose (f-NCC) with high crystallinity and needle-like geometry promoted a strong heterogeneous nucleation on the PU crystallization (the highest crystallinity, 31.3%) and contributed to 58% and 47% increase in tensile strength (48.9 MPa) and Young's modulus (237.2 MPa) without deteriorating the existent outstanding flexibility (εmax = 756.14%), thereby featuring favorable shape memory and fluorescence. Furthermore, the f-NCC based films showed the highest shape memory properties (Rr = 99.7%, Rf = 99.4%) than functionalized cellulose from cotton pulps and functionalized microcrystal cellulose based ones. The “rigid-stretchable” unity of SMPUs would lay a significant foundation of applications in the fields of larger strain sensors and show great potential in information hiding and storage fields. [Display omitted]</abstract><cop>Barking</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.compscitech.2020.108524</doi></addata></record>
fulltext fulltext
identifier ISSN: 0266-3538
ispartof Composites science and technology, 2021-01, Vol.201, p.108524, Article 108524
issn 0266-3538
1879-1050
language eng
recordid cdi_proquest_journals_2487168538
source Elsevier ScienceDirect Journals
subjects Cellulose
Composite materials
Cotton
Crystal structure
Crystallinity
Crystallization
Deformation
Flexibility
Fluorescence
Formability
Hydrogen bonding
Mechanical properties
Microcrystals
Modulus of elasticity
Multifunctional properties
Nanocrystals
Nucleation
Polymer matrix composites
Polymers
Polyurethane resins
Shape memory
Smart materials
Stiffness
Stretchability
Tensile strength
Unity
title “Rigid-stretchable” unity of shape memory composites with fluorescence via crystallinity tailoring for anti-counterfeiting application
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T15%3A18%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=%E2%80%9CRigid-stretchable%E2%80%9D%20unity%20of%20shape%20memory%20composites%20with%20fluorescence%20via%20crystallinity%20tailoring%20for%20anti-counterfeiting%20application&rft.jtitle=Composites%20science%20and%20technology&rft.au=Cai,%20Chenyang&rft.date=2021-01-05&rft.volume=201&rft.spage=108524&rft.pages=108524-&rft.artnum=108524&rft.issn=0266-3538&rft.eissn=1879-1050&rft_id=info:doi/10.1016/j.compscitech.2020.108524&rft_dat=%3Cproquest_cross%3E2487168538%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2487168538&rft_id=info:pmid/&rft_els_id=S0266353820323149&rfr_iscdi=true