Carbon nanotubes loaded with carbon nanofibers as scaffold for Li metal battery anodes

Lithium (Li) metal base battery is the most attractive anode for high energy density batteries since its high theoretical capacity and low anode potential. However, the irreversible Li plating/stripping can induce the decrease of cyclic capability and the growth of lithium dendrite, leading to a ser...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of alloys and compounds 2021-02, Vol.854, p.157122, Article 157122
Hauptverfasser: Song, Xinrui, Zeng, Xierong, Zou, Jizhao, Zhao, Fenglin, Wu, Hongliang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 157122
container_title Journal of alloys and compounds
container_volume 854
creator Song, Xinrui
Zeng, Xierong
Zou, Jizhao
Zhao, Fenglin
Wu, Hongliang
description Lithium (Li) metal base battery is the most attractive anode for high energy density batteries since its high theoretical capacity and low anode potential. However, the irreversible Li plating/stripping can induce the decrease of cyclic capability and the growth of lithium dendrite, leading to a series of issues like infinite volume change, low coulombic efficiency, and short circuit. Herein, a 3D conductive carbon nanofibers scaffold with carbon nanotubes (CNTs/CNFs) obtained through a simple electrospinning method, which can be used to regulate metallic Li deposition and inhibit the growth of Li dendrites. On the other hand, CNTs/CNFs scaffold can prove ample space for lithium deposition and alleviate the huge volumetric variation during the discharge/charge cycles. Since the introduction of CNTs, the CNTs/CNFs electrode exhibits a highly reversible plating/stripping with an extremely low overpotential upon >500 h at 1 mA cm−2 in symmetric cells, respectively. Even the high current density up to 5 mA cm−2, the cell still shows a minimum overpotential of 92 mV upon >50 h. When the Li deposited CNTs/CNFs (Li@CNTs/CNFs) anode is applied in a full cell with a commercial LiFePO4 cathode, a stable capacity of 123 mAh g−1 can be still achieved 150 cycles. It is anticipated that the CNTs/CNFs scaffold could be further combined with electrolytes and cathodes to develop high-performance energy systems. •A 3D conductive carbon nanofibers scaffold with carbon nanotubes (CNTs/CNFs) obtained through a simple electrospinning method.•The CNTs/CNFs scaffold could regulate metallic Li deposition homogenously and inhibit the growth of lithium dendrite.•When the Li deposited CNTs/CNFs (Li@CNTs/CNFs) anode is applied in a full cell with a commercial LiFePO4 cathode, a stable capacity can be still achieved 150 cycles.
doi_str_mv 10.1016/j.jallcom.2020.157122
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2487168291</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925838820334861</els_id><sourcerecordid>2487168291</sourcerecordid><originalsourceid>FETCH-LOGICAL-c252t-b5049f94ee707e90971bce4235cc54cb70f703e21af8d9c2f22e3e1f4b533d683</originalsourceid><addsrcrecordid>eNqFkEtLAzEUhYMoWKs_QQi4nprHZCZZiRRfUHCjbkMeNzjDdFKTVOm_d0oLLl1duPecczkfQteULCihzW2_6M0wuLheMMKmnWgpYydoRmXLq7pp1CmaEcVEJbmU5-gi554QQhWnM_SxNMnGEY9mjGVrIeMhGg8e_3TlE7u_Y-gspIxNxtmZEOLgcYgJrzq8hmIGbE0pkHZ4knrIl-gsmCHD1XHO0fvjw9vyuVq9Pr0s71eVY4KVygpSq6BqgJa0oIhqqXVQMy6cE7WzLQkt4cCoCdIrxwJjwIGG2grOfSP5HN0ccjcpfm0hF93HbRqnl5rVsqWNZIpOKnFQuRRzThD0JnVrk3aaEr1HqHt9RKj3CPUB4eS7O_hgqvDdQdLZdTA68F0CV7SP3T8Jv_E8fKE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2487168291</pqid></control><display><type>article</type><title>Carbon nanotubes loaded with carbon nanofibers as scaffold for Li metal battery anodes</title><source>Elsevier ScienceDirect Journals</source><creator>Song, Xinrui ; Zeng, Xierong ; Zou, Jizhao ; Zhao, Fenglin ; Wu, Hongliang</creator><creatorcontrib>Song, Xinrui ; Zeng, Xierong ; Zou, Jizhao ; Zhao, Fenglin ; Wu, Hongliang</creatorcontrib><description>Lithium (Li) metal base battery is the most attractive anode for high energy density batteries since its high theoretical capacity and low anode potential. However, the irreversible Li plating/stripping can induce the decrease of cyclic capability and the growth of lithium dendrite, leading to a series of issues like infinite volume change, low coulombic efficiency, and short circuit. Herein, a 3D conductive carbon nanofibers scaffold with carbon nanotubes (CNTs/CNFs) obtained through a simple electrospinning method, which can be used to regulate metallic Li deposition and inhibit the growth of Li dendrites. On the other hand, CNTs/CNFs scaffold can prove ample space for lithium deposition and alleviate the huge volumetric variation during the discharge/charge cycles. Since the introduction of CNTs, the CNTs/CNFs electrode exhibits a highly reversible plating/stripping with an extremely low overpotential upon &gt;500 h at 1 mA cm−2 in symmetric cells, respectively. Even the high current density up to 5 mA cm−2, the cell still shows a minimum overpotential of 92 mV upon &gt;50 h. When the Li deposited CNTs/CNFs (Li@CNTs/CNFs) anode is applied in a full cell with a commercial LiFePO4 cathode, a stable capacity of 123 mAh g−1 can be still achieved 150 cycles. It is anticipated that the CNTs/CNFs scaffold could be further combined with electrolytes and cathodes to develop high-performance energy systems. •A 3D conductive carbon nanofibers scaffold with carbon nanotubes (CNTs/CNFs) obtained through a simple electrospinning method.•The CNTs/CNFs scaffold could regulate metallic Li deposition homogenously and inhibit the growth of lithium dendrite.•When the Li deposited CNTs/CNFs (Li@CNTs/CNFs) anode is applied in a full cell with a commercial LiFePO4 cathode, a stable capacity can be still achieved 150 cycles.</description><identifier>ISSN: 0925-8388</identifier><identifier>EISSN: 1873-4669</identifier><identifier>DOI: 10.1016/j.jallcom.2020.157122</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Anodes ; Carbon fibers ; Carbon nanofibers ; Carbon nanotubes ; Cathodes ; Dendrite ; Dendritic structure ; Deposition ; Electrolytes ; Electrolytic cells ; Electrospinning ; Flux density ; Li metal anode ; Lithium ; Multi-walled carbon nanotube ; Nanofibers ; Plating ; Scaffolds ; Short circuits ; Stripping</subject><ispartof>Journal of alloys and compounds, 2021-02, Vol.854, p.157122, Article 157122</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier BV Feb 15, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c252t-b5049f94ee707e90971bce4235cc54cb70f703e21af8d9c2f22e3e1f4b533d683</citedby><cites>FETCH-LOGICAL-c252t-b5049f94ee707e90971bce4235cc54cb70f703e21af8d9c2f22e3e1f4b533d683</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jallcom.2020.157122$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids></links><search><creatorcontrib>Song, Xinrui</creatorcontrib><creatorcontrib>Zeng, Xierong</creatorcontrib><creatorcontrib>Zou, Jizhao</creatorcontrib><creatorcontrib>Zhao, Fenglin</creatorcontrib><creatorcontrib>Wu, Hongliang</creatorcontrib><title>Carbon nanotubes loaded with carbon nanofibers as scaffold for Li metal battery anodes</title><title>Journal of alloys and compounds</title><description>Lithium (Li) metal base battery is the most attractive anode for high energy density batteries since its high theoretical capacity and low anode potential. However, the irreversible Li plating/stripping can induce the decrease of cyclic capability and the growth of lithium dendrite, leading to a series of issues like infinite volume change, low coulombic efficiency, and short circuit. Herein, a 3D conductive carbon nanofibers scaffold with carbon nanotubes (CNTs/CNFs) obtained through a simple electrospinning method, which can be used to regulate metallic Li deposition and inhibit the growth of Li dendrites. On the other hand, CNTs/CNFs scaffold can prove ample space for lithium deposition and alleviate the huge volumetric variation during the discharge/charge cycles. Since the introduction of CNTs, the CNTs/CNFs electrode exhibits a highly reversible plating/stripping with an extremely low overpotential upon &gt;500 h at 1 mA cm−2 in symmetric cells, respectively. Even the high current density up to 5 mA cm−2, the cell still shows a minimum overpotential of 92 mV upon &gt;50 h. When the Li deposited CNTs/CNFs (Li@CNTs/CNFs) anode is applied in a full cell with a commercial LiFePO4 cathode, a stable capacity of 123 mAh g−1 can be still achieved 150 cycles. It is anticipated that the CNTs/CNFs scaffold could be further combined with electrolytes and cathodes to develop high-performance energy systems. •A 3D conductive carbon nanofibers scaffold with carbon nanotubes (CNTs/CNFs) obtained through a simple electrospinning method.•The CNTs/CNFs scaffold could regulate metallic Li deposition homogenously and inhibit the growth of lithium dendrite.•When the Li deposited CNTs/CNFs (Li@CNTs/CNFs) anode is applied in a full cell with a commercial LiFePO4 cathode, a stable capacity can be still achieved 150 cycles.</description><subject>Anodes</subject><subject>Carbon fibers</subject><subject>Carbon nanofibers</subject><subject>Carbon nanotubes</subject><subject>Cathodes</subject><subject>Dendrite</subject><subject>Dendritic structure</subject><subject>Deposition</subject><subject>Electrolytes</subject><subject>Electrolytic cells</subject><subject>Electrospinning</subject><subject>Flux density</subject><subject>Li metal anode</subject><subject>Lithium</subject><subject>Multi-walled carbon nanotube</subject><subject>Nanofibers</subject><subject>Plating</subject><subject>Scaffolds</subject><subject>Short circuits</subject><subject>Stripping</subject><issn>0925-8388</issn><issn>1873-4669</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLAzEUhYMoWKs_QQi4nprHZCZZiRRfUHCjbkMeNzjDdFKTVOm_d0oLLl1duPecczkfQteULCihzW2_6M0wuLheMMKmnWgpYydoRmXLq7pp1CmaEcVEJbmU5-gi554QQhWnM_SxNMnGEY9mjGVrIeMhGg8e_3TlE7u_Y-gspIxNxtmZEOLgcYgJrzq8hmIGbE0pkHZ4knrIl-gsmCHD1XHO0fvjw9vyuVq9Pr0s71eVY4KVygpSq6BqgJa0oIhqqXVQMy6cE7WzLQkt4cCoCdIrxwJjwIGG2grOfSP5HN0ccjcpfm0hF93HbRqnl5rVsqWNZIpOKnFQuRRzThD0JnVrk3aaEr1HqHt9RKj3CPUB4eS7O_hgqvDdQdLZdTA68F0CV7SP3T8Jv_E8fKE</recordid><startdate>20210215</startdate><enddate>20210215</enddate><creator>Song, Xinrui</creator><creator>Zeng, Xierong</creator><creator>Zou, Jizhao</creator><creator>Zhao, Fenglin</creator><creator>Wu, Hongliang</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20210215</creationdate><title>Carbon nanotubes loaded with carbon nanofibers as scaffold for Li metal battery anodes</title><author>Song, Xinrui ; Zeng, Xierong ; Zou, Jizhao ; Zhao, Fenglin ; Wu, Hongliang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c252t-b5049f94ee707e90971bce4235cc54cb70f703e21af8d9c2f22e3e1f4b533d683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Anodes</topic><topic>Carbon fibers</topic><topic>Carbon nanofibers</topic><topic>Carbon nanotubes</topic><topic>Cathodes</topic><topic>Dendrite</topic><topic>Dendritic structure</topic><topic>Deposition</topic><topic>Electrolytes</topic><topic>Electrolytic cells</topic><topic>Electrospinning</topic><topic>Flux density</topic><topic>Li metal anode</topic><topic>Lithium</topic><topic>Multi-walled carbon nanotube</topic><topic>Nanofibers</topic><topic>Plating</topic><topic>Scaffolds</topic><topic>Short circuits</topic><topic>Stripping</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Song, Xinrui</creatorcontrib><creatorcontrib>Zeng, Xierong</creatorcontrib><creatorcontrib>Zou, Jizhao</creatorcontrib><creatorcontrib>Zhao, Fenglin</creatorcontrib><creatorcontrib>Wu, Hongliang</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of alloys and compounds</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Song, Xinrui</au><au>Zeng, Xierong</au><au>Zou, Jizhao</au><au>Zhao, Fenglin</au><au>Wu, Hongliang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Carbon nanotubes loaded with carbon nanofibers as scaffold for Li metal battery anodes</atitle><jtitle>Journal of alloys and compounds</jtitle><date>2021-02-15</date><risdate>2021</risdate><volume>854</volume><spage>157122</spage><pages>157122-</pages><artnum>157122</artnum><issn>0925-8388</issn><eissn>1873-4669</eissn><abstract>Lithium (Li) metal base battery is the most attractive anode for high energy density batteries since its high theoretical capacity and low anode potential. However, the irreversible Li plating/stripping can induce the decrease of cyclic capability and the growth of lithium dendrite, leading to a series of issues like infinite volume change, low coulombic efficiency, and short circuit. Herein, a 3D conductive carbon nanofibers scaffold with carbon nanotubes (CNTs/CNFs) obtained through a simple electrospinning method, which can be used to regulate metallic Li deposition and inhibit the growth of Li dendrites. On the other hand, CNTs/CNFs scaffold can prove ample space for lithium deposition and alleviate the huge volumetric variation during the discharge/charge cycles. Since the introduction of CNTs, the CNTs/CNFs electrode exhibits a highly reversible plating/stripping with an extremely low overpotential upon &gt;500 h at 1 mA cm−2 in symmetric cells, respectively. Even the high current density up to 5 mA cm−2, the cell still shows a minimum overpotential of 92 mV upon &gt;50 h. When the Li deposited CNTs/CNFs (Li@CNTs/CNFs) anode is applied in a full cell with a commercial LiFePO4 cathode, a stable capacity of 123 mAh g−1 can be still achieved 150 cycles. It is anticipated that the CNTs/CNFs scaffold could be further combined with electrolytes and cathodes to develop high-performance energy systems. •A 3D conductive carbon nanofibers scaffold with carbon nanotubes (CNTs/CNFs) obtained through a simple electrospinning method.•The CNTs/CNFs scaffold could regulate metallic Li deposition homogenously and inhibit the growth of lithium dendrite.•When the Li deposited CNTs/CNFs (Li@CNTs/CNFs) anode is applied in a full cell with a commercial LiFePO4 cathode, a stable capacity can be still achieved 150 cycles.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jallcom.2020.157122</doi></addata></record>
fulltext fulltext
identifier ISSN: 0925-8388
ispartof Journal of alloys and compounds, 2021-02, Vol.854, p.157122, Article 157122
issn 0925-8388
1873-4669
language eng
recordid cdi_proquest_journals_2487168291
source Elsevier ScienceDirect Journals
subjects Anodes
Carbon fibers
Carbon nanofibers
Carbon nanotubes
Cathodes
Dendrite
Dendritic structure
Deposition
Electrolytes
Electrolytic cells
Electrospinning
Flux density
Li metal anode
Lithium
Multi-walled carbon nanotube
Nanofibers
Plating
Scaffolds
Short circuits
Stripping
title Carbon nanotubes loaded with carbon nanofibers as scaffold for Li metal battery anodes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T23%3A22%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Carbon%20nanotubes%20loaded%20with%20carbon%20nanofibers%20as%20scaffold%20for%20Li%20metal%20battery%20anodes&rft.jtitle=Journal%20of%20alloys%20and%20compounds&rft.au=Song,%20Xinrui&rft.date=2021-02-15&rft.volume=854&rft.spage=157122&rft.pages=157122-&rft.artnum=157122&rft.issn=0925-8388&rft.eissn=1873-4669&rft_id=info:doi/10.1016/j.jallcom.2020.157122&rft_dat=%3Cproquest_cross%3E2487168291%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2487168291&rft_id=info:pmid/&rft_els_id=S0925838820334861&rfr_iscdi=true