Carbon nanotubes loaded with carbon nanofibers as scaffold for Li metal battery anodes
Lithium (Li) metal base battery is the most attractive anode for high energy density batteries since its high theoretical capacity and low anode potential. However, the irreversible Li plating/stripping can induce the decrease of cyclic capability and the growth of lithium dendrite, leading to a ser...
Gespeichert in:
Veröffentlicht in: | Journal of alloys and compounds 2021-02, Vol.854, p.157122, Article 157122 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 157122 |
container_title | Journal of alloys and compounds |
container_volume | 854 |
creator | Song, Xinrui Zeng, Xierong Zou, Jizhao Zhao, Fenglin Wu, Hongliang |
description | Lithium (Li) metal base battery is the most attractive anode for high energy density batteries since its high theoretical capacity and low anode potential. However, the irreversible Li plating/stripping can induce the decrease of cyclic capability and the growth of lithium dendrite, leading to a series of issues like infinite volume change, low coulombic efficiency, and short circuit. Herein, a 3D conductive carbon nanofibers scaffold with carbon nanotubes (CNTs/CNFs) obtained through a simple electrospinning method, which can be used to regulate metallic Li deposition and inhibit the growth of Li dendrites. On the other hand, CNTs/CNFs scaffold can prove ample space for lithium deposition and alleviate the huge volumetric variation during the discharge/charge cycles. Since the introduction of CNTs, the CNTs/CNFs electrode exhibits a highly reversible plating/stripping with an extremely low overpotential upon >500 h at 1 mA cm−2 in symmetric cells, respectively. Even the high current density up to 5 mA cm−2, the cell still shows a minimum overpotential of 92 mV upon >50 h. When the Li deposited CNTs/CNFs (Li@CNTs/CNFs) anode is applied in a full cell with a commercial LiFePO4 cathode, a stable capacity of 123 mAh g−1 can be still achieved 150 cycles. It is anticipated that the CNTs/CNFs scaffold could be further combined with electrolytes and cathodes to develop high-performance energy systems.
•A 3D conductive carbon nanofibers scaffold with carbon nanotubes (CNTs/CNFs) obtained through a simple electrospinning method.•The CNTs/CNFs scaffold could regulate metallic Li deposition homogenously and inhibit the growth of lithium dendrite.•When the Li deposited CNTs/CNFs (Li@CNTs/CNFs) anode is applied in a full cell with a commercial LiFePO4 cathode, a stable capacity can be still achieved 150 cycles. |
doi_str_mv | 10.1016/j.jallcom.2020.157122 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2487168291</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925838820334861</els_id><sourcerecordid>2487168291</sourcerecordid><originalsourceid>FETCH-LOGICAL-c252t-b5049f94ee707e90971bce4235cc54cb70f703e21af8d9c2f22e3e1f4b533d683</originalsourceid><addsrcrecordid>eNqFkEtLAzEUhYMoWKs_QQi4nprHZCZZiRRfUHCjbkMeNzjDdFKTVOm_d0oLLl1duPecczkfQteULCihzW2_6M0wuLheMMKmnWgpYydoRmXLq7pp1CmaEcVEJbmU5-gi554QQhWnM_SxNMnGEY9mjGVrIeMhGg8e_3TlE7u_Y-gspIxNxtmZEOLgcYgJrzq8hmIGbE0pkHZ4knrIl-gsmCHD1XHO0fvjw9vyuVq9Pr0s71eVY4KVygpSq6BqgJa0oIhqqXVQMy6cE7WzLQkt4cCoCdIrxwJjwIGG2grOfSP5HN0ccjcpfm0hF93HbRqnl5rVsqWNZIpOKnFQuRRzThD0JnVrk3aaEr1HqHt9RKj3CPUB4eS7O_hgqvDdQdLZdTA68F0CV7SP3T8Jv_E8fKE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2487168291</pqid></control><display><type>article</type><title>Carbon nanotubes loaded with carbon nanofibers as scaffold for Li metal battery anodes</title><source>Elsevier ScienceDirect Journals</source><creator>Song, Xinrui ; Zeng, Xierong ; Zou, Jizhao ; Zhao, Fenglin ; Wu, Hongliang</creator><creatorcontrib>Song, Xinrui ; Zeng, Xierong ; Zou, Jizhao ; Zhao, Fenglin ; Wu, Hongliang</creatorcontrib><description>Lithium (Li) metal base battery is the most attractive anode for high energy density batteries since its high theoretical capacity and low anode potential. However, the irreversible Li plating/stripping can induce the decrease of cyclic capability and the growth of lithium dendrite, leading to a series of issues like infinite volume change, low coulombic efficiency, and short circuit. Herein, a 3D conductive carbon nanofibers scaffold with carbon nanotubes (CNTs/CNFs) obtained through a simple electrospinning method, which can be used to regulate metallic Li deposition and inhibit the growth of Li dendrites. On the other hand, CNTs/CNFs scaffold can prove ample space for lithium deposition and alleviate the huge volumetric variation during the discharge/charge cycles. Since the introduction of CNTs, the CNTs/CNFs electrode exhibits a highly reversible plating/stripping with an extremely low overpotential upon >500 h at 1 mA cm−2 in symmetric cells, respectively. Even the high current density up to 5 mA cm−2, the cell still shows a minimum overpotential of 92 mV upon >50 h. When the Li deposited CNTs/CNFs (Li@CNTs/CNFs) anode is applied in a full cell with a commercial LiFePO4 cathode, a stable capacity of 123 mAh g−1 can be still achieved 150 cycles. It is anticipated that the CNTs/CNFs scaffold could be further combined with electrolytes and cathodes to develop high-performance energy systems.
•A 3D conductive carbon nanofibers scaffold with carbon nanotubes (CNTs/CNFs) obtained through a simple electrospinning method.•The CNTs/CNFs scaffold could regulate metallic Li deposition homogenously and inhibit the growth of lithium dendrite.•When the Li deposited CNTs/CNFs (Li@CNTs/CNFs) anode is applied in a full cell with a commercial LiFePO4 cathode, a stable capacity can be still achieved 150 cycles.</description><identifier>ISSN: 0925-8388</identifier><identifier>EISSN: 1873-4669</identifier><identifier>DOI: 10.1016/j.jallcom.2020.157122</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Anodes ; Carbon fibers ; Carbon nanofibers ; Carbon nanotubes ; Cathodes ; Dendrite ; Dendritic structure ; Deposition ; Electrolytes ; Electrolytic cells ; Electrospinning ; Flux density ; Li metal anode ; Lithium ; Multi-walled carbon nanotube ; Nanofibers ; Plating ; Scaffolds ; Short circuits ; Stripping</subject><ispartof>Journal of alloys and compounds, 2021-02, Vol.854, p.157122, Article 157122</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier BV Feb 15, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c252t-b5049f94ee707e90971bce4235cc54cb70f703e21af8d9c2f22e3e1f4b533d683</citedby><cites>FETCH-LOGICAL-c252t-b5049f94ee707e90971bce4235cc54cb70f703e21af8d9c2f22e3e1f4b533d683</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jallcom.2020.157122$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids></links><search><creatorcontrib>Song, Xinrui</creatorcontrib><creatorcontrib>Zeng, Xierong</creatorcontrib><creatorcontrib>Zou, Jizhao</creatorcontrib><creatorcontrib>Zhao, Fenglin</creatorcontrib><creatorcontrib>Wu, Hongliang</creatorcontrib><title>Carbon nanotubes loaded with carbon nanofibers as scaffold for Li metal battery anodes</title><title>Journal of alloys and compounds</title><description>Lithium (Li) metal base battery is the most attractive anode for high energy density batteries since its high theoretical capacity and low anode potential. However, the irreversible Li plating/stripping can induce the decrease of cyclic capability and the growth of lithium dendrite, leading to a series of issues like infinite volume change, low coulombic efficiency, and short circuit. Herein, a 3D conductive carbon nanofibers scaffold with carbon nanotubes (CNTs/CNFs) obtained through a simple electrospinning method, which can be used to regulate metallic Li deposition and inhibit the growth of Li dendrites. On the other hand, CNTs/CNFs scaffold can prove ample space for lithium deposition and alleviate the huge volumetric variation during the discharge/charge cycles. Since the introduction of CNTs, the CNTs/CNFs electrode exhibits a highly reversible plating/stripping with an extremely low overpotential upon >500 h at 1 mA cm−2 in symmetric cells, respectively. Even the high current density up to 5 mA cm−2, the cell still shows a minimum overpotential of 92 mV upon >50 h. When the Li deposited CNTs/CNFs (Li@CNTs/CNFs) anode is applied in a full cell with a commercial LiFePO4 cathode, a stable capacity of 123 mAh g−1 can be still achieved 150 cycles. It is anticipated that the CNTs/CNFs scaffold could be further combined with electrolytes and cathodes to develop high-performance energy systems.
•A 3D conductive carbon nanofibers scaffold with carbon nanotubes (CNTs/CNFs) obtained through a simple electrospinning method.•The CNTs/CNFs scaffold could regulate metallic Li deposition homogenously and inhibit the growth of lithium dendrite.•When the Li deposited CNTs/CNFs (Li@CNTs/CNFs) anode is applied in a full cell with a commercial LiFePO4 cathode, a stable capacity can be still achieved 150 cycles.</description><subject>Anodes</subject><subject>Carbon fibers</subject><subject>Carbon nanofibers</subject><subject>Carbon nanotubes</subject><subject>Cathodes</subject><subject>Dendrite</subject><subject>Dendritic structure</subject><subject>Deposition</subject><subject>Electrolytes</subject><subject>Electrolytic cells</subject><subject>Electrospinning</subject><subject>Flux density</subject><subject>Li metal anode</subject><subject>Lithium</subject><subject>Multi-walled carbon nanotube</subject><subject>Nanofibers</subject><subject>Plating</subject><subject>Scaffolds</subject><subject>Short circuits</subject><subject>Stripping</subject><issn>0925-8388</issn><issn>1873-4669</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLAzEUhYMoWKs_QQi4nprHZCZZiRRfUHCjbkMeNzjDdFKTVOm_d0oLLl1duPecczkfQteULCihzW2_6M0wuLheMMKmnWgpYydoRmXLq7pp1CmaEcVEJbmU5-gi554QQhWnM_SxNMnGEY9mjGVrIeMhGg8e_3TlE7u_Y-gspIxNxtmZEOLgcYgJrzq8hmIGbE0pkHZ4knrIl-gsmCHD1XHO0fvjw9vyuVq9Pr0s71eVY4KVygpSq6BqgJa0oIhqqXVQMy6cE7WzLQkt4cCoCdIrxwJjwIGG2grOfSP5HN0ccjcpfm0hF93HbRqnl5rVsqWNZIpOKnFQuRRzThD0JnVrk3aaEr1HqHt9RKj3CPUB4eS7O_hgqvDdQdLZdTA68F0CV7SP3T8Jv_E8fKE</recordid><startdate>20210215</startdate><enddate>20210215</enddate><creator>Song, Xinrui</creator><creator>Zeng, Xierong</creator><creator>Zou, Jizhao</creator><creator>Zhao, Fenglin</creator><creator>Wu, Hongliang</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20210215</creationdate><title>Carbon nanotubes loaded with carbon nanofibers as scaffold for Li metal battery anodes</title><author>Song, Xinrui ; Zeng, Xierong ; Zou, Jizhao ; Zhao, Fenglin ; Wu, Hongliang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c252t-b5049f94ee707e90971bce4235cc54cb70f703e21af8d9c2f22e3e1f4b533d683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Anodes</topic><topic>Carbon fibers</topic><topic>Carbon nanofibers</topic><topic>Carbon nanotubes</topic><topic>Cathodes</topic><topic>Dendrite</topic><topic>Dendritic structure</topic><topic>Deposition</topic><topic>Electrolytes</topic><topic>Electrolytic cells</topic><topic>Electrospinning</topic><topic>Flux density</topic><topic>Li metal anode</topic><topic>Lithium</topic><topic>Multi-walled carbon nanotube</topic><topic>Nanofibers</topic><topic>Plating</topic><topic>Scaffolds</topic><topic>Short circuits</topic><topic>Stripping</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Song, Xinrui</creatorcontrib><creatorcontrib>Zeng, Xierong</creatorcontrib><creatorcontrib>Zou, Jizhao</creatorcontrib><creatorcontrib>Zhao, Fenglin</creatorcontrib><creatorcontrib>Wu, Hongliang</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of alloys and compounds</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Song, Xinrui</au><au>Zeng, Xierong</au><au>Zou, Jizhao</au><au>Zhao, Fenglin</au><au>Wu, Hongliang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Carbon nanotubes loaded with carbon nanofibers as scaffold for Li metal battery anodes</atitle><jtitle>Journal of alloys and compounds</jtitle><date>2021-02-15</date><risdate>2021</risdate><volume>854</volume><spage>157122</spage><pages>157122-</pages><artnum>157122</artnum><issn>0925-8388</issn><eissn>1873-4669</eissn><abstract>Lithium (Li) metal base battery is the most attractive anode for high energy density batteries since its high theoretical capacity and low anode potential. However, the irreversible Li plating/stripping can induce the decrease of cyclic capability and the growth of lithium dendrite, leading to a series of issues like infinite volume change, low coulombic efficiency, and short circuit. Herein, a 3D conductive carbon nanofibers scaffold with carbon nanotubes (CNTs/CNFs) obtained through a simple electrospinning method, which can be used to regulate metallic Li deposition and inhibit the growth of Li dendrites. On the other hand, CNTs/CNFs scaffold can prove ample space for lithium deposition and alleviate the huge volumetric variation during the discharge/charge cycles. Since the introduction of CNTs, the CNTs/CNFs electrode exhibits a highly reversible plating/stripping with an extremely low overpotential upon >500 h at 1 mA cm−2 in symmetric cells, respectively. Even the high current density up to 5 mA cm−2, the cell still shows a minimum overpotential of 92 mV upon >50 h. When the Li deposited CNTs/CNFs (Li@CNTs/CNFs) anode is applied in a full cell with a commercial LiFePO4 cathode, a stable capacity of 123 mAh g−1 can be still achieved 150 cycles. It is anticipated that the CNTs/CNFs scaffold could be further combined with electrolytes and cathodes to develop high-performance energy systems.
•A 3D conductive carbon nanofibers scaffold with carbon nanotubes (CNTs/CNFs) obtained through a simple electrospinning method.•The CNTs/CNFs scaffold could regulate metallic Li deposition homogenously and inhibit the growth of lithium dendrite.•When the Li deposited CNTs/CNFs (Li@CNTs/CNFs) anode is applied in a full cell with a commercial LiFePO4 cathode, a stable capacity can be still achieved 150 cycles.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jallcom.2020.157122</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0925-8388 |
ispartof | Journal of alloys and compounds, 2021-02, Vol.854, p.157122, Article 157122 |
issn | 0925-8388 1873-4669 |
language | eng |
recordid | cdi_proquest_journals_2487168291 |
source | Elsevier ScienceDirect Journals |
subjects | Anodes Carbon fibers Carbon nanofibers Carbon nanotubes Cathodes Dendrite Dendritic structure Deposition Electrolytes Electrolytic cells Electrospinning Flux density Li metal anode Lithium Multi-walled carbon nanotube Nanofibers Plating Scaffolds Short circuits Stripping |
title | Carbon nanotubes loaded with carbon nanofibers as scaffold for Li metal battery anodes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T23%3A22%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Carbon%20nanotubes%20loaded%20with%20carbon%20nanofibers%20as%20scaffold%20for%20Li%20metal%20battery%20anodes&rft.jtitle=Journal%20of%20alloys%20and%20compounds&rft.au=Song,%20Xinrui&rft.date=2021-02-15&rft.volume=854&rft.spage=157122&rft.pages=157122-&rft.artnum=157122&rft.issn=0925-8388&rft.eissn=1873-4669&rft_id=info:doi/10.1016/j.jallcom.2020.157122&rft_dat=%3Cproquest_cross%3E2487168291%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2487168291&rft_id=info:pmid/&rft_els_id=S0925838820334861&rfr_iscdi=true |