TDCOSMO
Time-delay cosmography of lensed quasars has achieved 2.4% precision on the measurement of the Hubble constant, H0. As part of an ongoing effort to uncover and control systematic uncertainties, we investigate three potential sources: 1- stellar kinematics, 2- line-of-sight effects, and 3- the deflec...
Gespeichert in:
Veröffentlicht in: | Astronomy and astrophysics (Berlin) 2020-07, Vol.639 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | Astronomy and astrophysics (Berlin) |
container_volume | 639 |
creator | Millon, M Galan, A Courbin, F Treu, T Suyu, S H Ding, X Birrer, S G. C.-F. Chen Shajib, A J Sluse, D Wong, K C Agnello, A Auger, M W Buckley-Geer, E J Chan, J H H Collett, T Fassnacht, C D Hilbert, S Koopmans, L V E Motta, V Mukherjee, S Rusu, C E Sonnenfeld, A Spiniello, C Van de Vyvere, L |
description | Time-delay cosmography of lensed quasars has achieved 2.4% precision on the measurement of the Hubble constant, H0. As part of an ongoing effort to uncover and control systematic uncertainties, we investigate three potential sources: 1- stellar kinematics, 2- line-of-sight effects, and 3- the deflector mass model. To meet this goal in a quantitative way, we reproduced the H0LiCOW/SHARP/STRIDES (hereafter TDCOSMO) procedures on a set of real and simulated data, and we find the following. First, stellar kinematics cannot be a dominant source of error or bias since we find that a systematic change of 10% of measured velocity dispersion leads to only a 0.7% shift on H0 from the seven lenses analyzed by TDCOSMO. Second, we find no bias to arise from incorrect estimation of the line-of-sight effects. Third, we show that elliptical composite (stars + dark matter halo), power-law, and cored power-law mass profiles have the flexibility to yield a broad range in H0 values. However, the TDCOSMO procedures that model the data with both composite and power-law mass profiles are informative. If the models agree, as we observe in real systems owing to the “bulge-halo” conspiracy, H0 is recovered precisely and accurately by both models. If the two models disagree, as in the case of some pathological models illustrated here, the TDCOSMO procedure either discriminates between them through the goodness of fit, or it accounts for the discrepancy in the final error bars provided by the analysis. This conclusion is consistent with a reanalysis of six of the TDCOSMO (real) lenses: the composite model yields H0 = 74.0−1.8+1.7 km s−1 Mpc−1, while the power-law model yields 74.2−1.6+1.6 km s−1 Mpc−1. In conclusion, we find no evidence of bias or errors larger than the current statistical uncertainties reported by TDCOSMO. |
doi_str_mv | 10.1051/0004-6361/201937351 |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2487145932</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2487145932</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1891-24fe40a8670dc729bbfa7d85159152e3780708e6c9ad9ccc77f2066246fc1e203</originalsourceid><addsrcrecordid>eNo9jUtrAjEURi_SYqe2v8Bl16n3keQmSxn7AsssatcyZpKFiK_R_69g6erjwOF8AGPCV0JHE0S0xounCSNFUXE0gIqssEG1_g6qf-MBHvt-fUWmIBUMF7O6-flunuC-tJs-P__tCH7f3xb1p5k3H1_1dG4ShUiGbckW2-AVu6QcV6vSahccuUiOs2hAxZB9im0XU0qqhdF7tr4kyowygpdbd3_cHc65Py3Xu_Nxe71csg1K1kVhuQAbCjS9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2487145932</pqid></control><display><type>article</type><title>TDCOSMO</title><source>Bacon EDP Sciences France Licence nationale-ISTEX-PS-Journals-PFISTEX</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>EDP Sciences</source><creator>Millon, M ; Galan, A ; Courbin, F ; Treu, T ; Suyu, S H ; Ding, X ; Birrer, S ; G. C.-F. Chen ; Shajib, A J ; Sluse, D ; Wong, K C ; Agnello, A ; Auger, M W ; Buckley-Geer, E J ; Chan, J H H ; Collett, T ; Fassnacht, C D ; Hilbert, S ; Koopmans, L V E ; Motta, V ; Mukherjee, S ; Rusu, C E ; Sonnenfeld, A ; Spiniello, C ; Van de Vyvere, L</creator><creatorcontrib>Millon, M ; Galan, A ; Courbin, F ; Treu, T ; Suyu, S H ; Ding, X ; Birrer, S ; G. C.-F. Chen ; Shajib, A J ; Sluse, D ; Wong, K C ; Agnello, A ; Auger, M W ; Buckley-Geer, E J ; Chan, J H H ; Collett, T ; Fassnacht, C D ; Hilbert, S ; Koopmans, L V E ; Motta, V ; Mukherjee, S ; Rusu, C E ; Sonnenfeld, A ; Spiniello, C ; Van de Vyvere, L</creatorcontrib><description>Time-delay cosmography of lensed quasars has achieved 2.4% precision on the measurement of the Hubble constant, H0. As part of an ongoing effort to uncover and control systematic uncertainties, we investigate three potential sources: 1- stellar kinematics, 2- line-of-sight effects, and 3- the deflector mass model. To meet this goal in a quantitative way, we reproduced the H0LiCOW/SHARP/STRIDES (hereafter TDCOSMO) procedures on a set of real and simulated data, and we find the following. First, stellar kinematics cannot be a dominant source of error or bias since we find that a systematic change of 10% of measured velocity dispersion leads to only a 0.7% shift on H0 from the seven lenses analyzed by TDCOSMO. Second, we find no bias to arise from incorrect estimation of the line-of-sight effects. Third, we show that elliptical composite (stars + dark matter halo), power-law, and cored power-law mass profiles have the flexibility to yield a broad range in H0 values. However, the TDCOSMO procedures that model the data with both composite and power-law mass profiles are informative. If the models agree, as we observe in real systems owing to the “bulge-halo” conspiracy, H0 is recovered precisely and accurately by both models. If the two models disagree, as in the case of some pathological models illustrated here, the TDCOSMO procedure either discriminates between them through the goodness of fit, or it accounts for the discrepancy in the final error bars provided by the analysis. This conclusion is consistent with a reanalysis of six of the TDCOSMO (real) lenses: the composite model yields H0 = 74.0−1.8+1.7 km s−1 Mpc−1, while the power-law model yields 74.2−1.6+1.6 km s−1 Mpc−1. In conclusion, we find no evidence of bias or errors larger than the current statistical uncertainties reported by TDCOSMO.</description><identifier>ISSN: 0004-6361</identifier><identifier>EISSN: 1432-0746</identifier><identifier>DOI: 10.1051/0004-6361/201937351</identifier><language>eng</language><publisher>Heidelberg: EDP Sciences</publisher><subject>Bias ; Dark matter ; Error analysis ; Goodness of fit ; Hubble constant ; Kinematics ; Lenses ; Line of sight ; Power law ; Quasars ; Stellar kinematics ; Uncertainty</subject><ispartof>Astronomy and astrophysics (Berlin), 2020-07, Vol.639</ispartof><rights>Copyright EDP Sciences Jul 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1891-24fe40a8670dc729bbfa7d85159152e3780708e6c9ad9ccc77f2066246fc1e203</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Millon, M</creatorcontrib><creatorcontrib>Galan, A</creatorcontrib><creatorcontrib>Courbin, F</creatorcontrib><creatorcontrib>Treu, T</creatorcontrib><creatorcontrib>Suyu, S H</creatorcontrib><creatorcontrib>Ding, X</creatorcontrib><creatorcontrib>Birrer, S</creatorcontrib><creatorcontrib>G. C.-F. Chen</creatorcontrib><creatorcontrib>Shajib, A J</creatorcontrib><creatorcontrib>Sluse, D</creatorcontrib><creatorcontrib>Wong, K C</creatorcontrib><creatorcontrib>Agnello, A</creatorcontrib><creatorcontrib>Auger, M W</creatorcontrib><creatorcontrib>Buckley-Geer, E J</creatorcontrib><creatorcontrib>Chan, J H H</creatorcontrib><creatorcontrib>Collett, T</creatorcontrib><creatorcontrib>Fassnacht, C D</creatorcontrib><creatorcontrib>Hilbert, S</creatorcontrib><creatorcontrib>Koopmans, L V E</creatorcontrib><creatorcontrib>Motta, V</creatorcontrib><creatorcontrib>Mukherjee, S</creatorcontrib><creatorcontrib>Rusu, C E</creatorcontrib><creatorcontrib>Sonnenfeld, A</creatorcontrib><creatorcontrib>Spiniello, C</creatorcontrib><creatorcontrib>Van de Vyvere, L</creatorcontrib><title>TDCOSMO</title><title>Astronomy and astrophysics (Berlin)</title><description>Time-delay cosmography of lensed quasars has achieved 2.4% precision on the measurement of the Hubble constant, H0. As part of an ongoing effort to uncover and control systematic uncertainties, we investigate three potential sources: 1- stellar kinematics, 2- line-of-sight effects, and 3- the deflector mass model. To meet this goal in a quantitative way, we reproduced the H0LiCOW/SHARP/STRIDES (hereafter TDCOSMO) procedures on a set of real and simulated data, and we find the following. First, stellar kinematics cannot be a dominant source of error or bias since we find that a systematic change of 10% of measured velocity dispersion leads to only a 0.7% shift on H0 from the seven lenses analyzed by TDCOSMO. Second, we find no bias to arise from incorrect estimation of the line-of-sight effects. Third, we show that elliptical composite (stars + dark matter halo), power-law, and cored power-law mass profiles have the flexibility to yield a broad range in H0 values. However, the TDCOSMO procedures that model the data with both composite and power-law mass profiles are informative. If the models agree, as we observe in real systems owing to the “bulge-halo” conspiracy, H0 is recovered precisely and accurately by both models. If the two models disagree, as in the case of some pathological models illustrated here, the TDCOSMO procedure either discriminates between them through the goodness of fit, or it accounts for the discrepancy in the final error bars provided by the analysis. This conclusion is consistent with a reanalysis of six of the TDCOSMO (real) lenses: the composite model yields H0 = 74.0−1.8+1.7 km s−1 Mpc−1, while the power-law model yields 74.2−1.6+1.6 km s−1 Mpc−1. In conclusion, we find no evidence of bias or errors larger than the current statistical uncertainties reported by TDCOSMO.</description><subject>Bias</subject><subject>Dark matter</subject><subject>Error analysis</subject><subject>Goodness of fit</subject><subject>Hubble constant</subject><subject>Kinematics</subject><subject>Lenses</subject><subject>Line of sight</subject><subject>Power law</subject><subject>Quasars</subject><subject>Stellar kinematics</subject><subject>Uncertainty</subject><issn>0004-6361</issn><issn>1432-0746</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9jUtrAjEURi_SYqe2v8Bl16n3keQmSxn7AsssatcyZpKFiK_R_69g6erjwOF8AGPCV0JHE0S0xounCSNFUXE0gIqssEG1_g6qf-MBHvt-fUWmIBUMF7O6-flunuC-tJs-P__tCH7f3xb1p5k3H1_1dG4ShUiGbckW2-AVu6QcV6vSahccuUiOs2hAxZB9im0XU0qqhdF7tr4kyowygpdbd3_cHc65Py3Xu_Nxe71csg1K1kVhuQAbCjS9</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Millon, M</creator><creator>Galan, A</creator><creator>Courbin, F</creator><creator>Treu, T</creator><creator>Suyu, S H</creator><creator>Ding, X</creator><creator>Birrer, S</creator><creator>G. C.-F. Chen</creator><creator>Shajib, A J</creator><creator>Sluse, D</creator><creator>Wong, K C</creator><creator>Agnello, A</creator><creator>Auger, M W</creator><creator>Buckley-Geer, E J</creator><creator>Chan, J H H</creator><creator>Collett, T</creator><creator>Fassnacht, C D</creator><creator>Hilbert, S</creator><creator>Koopmans, L V E</creator><creator>Motta, V</creator><creator>Mukherjee, S</creator><creator>Rusu, C E</creator><creator>Sonnenfeld, A</creator><creator>Spiniello, C</creator><creator>Van de Vyvere, L</creator><general>EDP Sciences</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20200701</creationdate><title>TDCOSMO</title><author>Millon, M ; Galan, A ; Courbin, F ; Treu, T ; Suyu, S H ; Ding, X ; Birrer, S ; G. C.-F. Chen ; Shajib, A J ; Sluse, D ; Wong, K C ; Agnello, A ; Auger, M W ; Buckley-Geer, E J ; Chan, J H H ; Collett, T ; Fassnacht, C D ; Hilbert, S ; Koopmans, L V E ; Motta, V ; Mukherjee, S ; Rusu, C E ; Sonnenfeld, A ; Spiniello, C ; Van de Vyvere, L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1891-24fe40a8670dc729bbfa7d85159152e3780708e6c9ad9ccc77f2066246fc1e203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bias</topic><topic>Dark matter</topic><topic>Error analysis</topic><topic>Goodness of fit</topic><topic>Hubble constant</topic><topic>Kinematics</topic><topic>Lenses</topic><topic>Line of sight</topic><topic>Power law</topic><topic>Quasars</topic><topic>Stellar kinematics</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Millon, M</creatorcontrib><creatorcontrib>Galan, A</creatorcontrib><creatorcontrib>Courbin, F</creatorcontrib><creatorcontrib>Treu, T</creatorcontrib><creatorcontrib>Suyu, S H</creatorcontrib><creatorcontrib>Ding, X</creatorcontrib><creatorcontrib>Birrer, S</creatorcontrib><creatorcontrib>G. C.-F. Chen</creatorcontrib><creatorcontrib>Shajib, A J</creatorcontrib><creatorcontrib>Sluse, D</creatorcontrib><creatorcontrib>Wong, K C</creatorcontrib><creatorcontrib>Agnello, A</creatorcontrib><creatorcontrib>Auger, M W</creatorcontrib><creatorcontrib>Buckley-Geer, E J</creatorcontrib><creatorcontrib>Chan, J H H</creatorcontrib><creatorcontrib>Collett, T</creatorcontrib><creatorcontrib>Fassnacht, C D</creatorcontrib><creatorcontrib>Hilbert, S</creatorcontrib><creatorcontrib>Koopmans, L V E</creatorcontrib><creatorcontrib>Motta, V</creatorcontrib><creatorcontrib>Mukherjee, S</creatorcontrib><creatorcontrib>Rusu, C E</creatorcontrib><creatorcontrib>Sonnenfeld, A</creatorcontrib><creatorcontrib>Spiniello, C</creatorcontrib><creatorcontrib>Van de Vyvere, L</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Astronomy and astrophysics (Berlin)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Millon, M</au><au>Galan, A</au><au>Courbin, F</au><au>Treu, T</au><au>Suyu, S H</au><au>Ding, X</au><au>Birrer, S</au><au>G. C.-F. Chen</au><au>Shajib, A J</au><au>Sluse, D</au><au>Wong, K C</au><au>Agnello, A</au><au>Auger, M W</au><au>Buckley-Geer, E J</au><au>Chan, J H H</au><au>Collett, T</au><au>Fassnacht, C D</au><au>Hilbert, S</au><au>Koopmans, L V E</au><au>Motta, V</au><au>Mukherjee, S</au><au>Rusu, C E</au><au>Sonnenfeld, A</au><au>Spiniello, C</au><au>Van de Vyvere, L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>TDCOSMO</atitle><jtitle>Astronomy and astrophysics (Berlin)</jtitle><date>2020-07-01</date><risdate>2020</risdate><volume>639</volume><issn>0004-6361</issn><eissn>1432-0746</eissn><abstract>Time-delay cosmography of lensed quasars has achieved 2.4% precision on the measurement of the Hubble constant, H0. As part of an ongoing effort to uncover and control systematic uncertainties, we investigate three potential sources: 1- stellar kinematics, 2- line-of-sight effects, and 3- the deflector mass model. To meet this goal in a quantitative way, we reproduced the H0LiCOW/SHARP/STRIDES (hereafter TDCOSMO) procedures on a set of real and simulated data, and we find the following. First, stellar kinematics cannot be a dominant source of error or bias since we find that a systematic change of 10% of measured velocity dispersion leads to only a 0.7% shift on H0 from the seven lenses analyzed by TDCOSMO. Second, we find no bias to arise from incorrect estimation of the line-of-sight effects. Third, we show that elliptical composite (stars + dark matter halo), power-law, and cored power-law mass profiles have the flexibility to yield a broad range in H0 values. However, the TDCOSMO procedures that model the data with both composite and power-law mass profiles are informative. If the models agree, as we observe in real systems owing to the “bulge-halo” conspiracy, H0 is recovered precisely and accurately by both models. If the two models disagree, as in the case of some pathological models illustrated here, the TDCOSMO procedure either discriminates between them through the goodness of fit, or it accounts for the discrepancy in the final error bars provided by the analysis. This conclusion is consistent with a reanalysis of six of the TDCOSMO (real) lenses: the composite model yields H0 = 74.0−1.8+1.7 km s−1 Mpc−1, while the power-law model yields 74.2−1.6+1.6 km s−1 Mpc−1. In conclusion, we find no evidence of bias or errors larger than the current statistical uncertainties reported by TDCOSMO.</abstract><cop>Heidelberg</cop><pub>EDP Sciences</pub><doi>10.1051/0004-6361/201937351</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0004-6361 |
ispartof | Astronomy and astrophysics (Berlin), 2020-07, Vol.639 |
issn | 0004-6361 1432-0746 |
language | eng |
recordid | cdi_proquest_journals_2487145932 |
source | Bacon EDP Sciences France Licence nationale-ISTEX-PS-Journals-PFISTEX; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; EDP Sciences |
subjects | Bias Dark matter Error analysis Goodness of fit Hubble constant Kinematics Lenses Line of sight Power law Quasars Stellar kinematics Uncertainty |
title | TDCOSMO |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T20%3A19%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=TDCOSMO&rft.jtitle=Astronomy%20and%20astrophysics%20(Berlin)&rft.au=Millon,%20M&rft.date=2020-07-01&rft.volume=639&rft.issn=0004-6361&rft.eissn=1432-0746&rft_id=info:doi/10.1051/0004-6361/201937351&rft_dat=%3Cproquest%3E2487145932%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2487145932&rft_id=info:pmid/&rfr_iscdi=true |