TDCOSMO

Time-delay cosmography of lensed quasars has achieved 2.4% precision on the measurement of the Hubble constant, H0. As part of an ongoing effort to uncover and control systematic uncertainties, we investigate three potential sources: 1- stellar kinematics, 2- line-of-sight effects, and 3- the deflec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Astronomy and astrophysics (Berlin) 2020-07, Vol.639
Hauptverfasser: Millon, M, Galan, A, Courbin, F, Treu, T, Suyu, S H, Ding, X, Birrer, S, G. C.-F. Chen, Shajib, A J, Sluse, D, Wong, K C, Agnello, A, Auger, M W, Buckley-Geer, E J, Chan, J H H, Collett, T, Fassnacht, C D, Hilbert, S, Koopmans, L V E, Motta, V, Mukherjee, S, Rusu, C E, Sonnenfeld, A, Spiniello, C, Van de Vyvere, L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Astronomy and astrophysics (Berlin)
container_volume 639
creator Millon, M
Galan, A
Courbin, F
Treu, T
Suyu, S H
Ding, X
Birrer, S
G. C.-F. Chen
Shajib, A J
Sluse, D
Wong, K C
Agnello, A
Auger, M W
Buckley-Geer, E J
Chan, J H H
Collett, T
Fassnacht, C D
Hilbert, S
Koopmans, L V E
Motta, V
Mukherjee, S
Rusu, C E
Sonnenfeld, A
Spiniello, C
Van de Vyvere, L
description Time-delay cosmography of lensed quasars has achieved 2.4% precision on the measurement of the Hubble constant, H0. As part of an ongoing effort to uncover and control systematic uncertainties, we investigate three potential sources: 1- stellar kinematics, 2- line-of-sight effects, and 3- the deflector mass model. To meet this goal in a quantitative way, we reproduced the H0LiCOW/SHARP/STRIDES (hereafter TDCOSMO) procedures on a set of real and simulated data, and we find the following. First, stellar kinematics cannot be a dominant source of error or bias since we find that a systematic change of 10% of measured velocity dispersion leads to only a 0.7% shift on H0 from the seven lenses analyzed by TDCOSMO. Second, we find no bias to arise from incorrect estimation of the line-of-sight effects. Third, we show that elliptical composite (stars + dark matter halo), power-law, and cored power-law mass profiles have the flexibility to yield a broad range in H0 values. However, the TDCOSMO procedures that model the data with both composite and power-law mass profiles are informative. If the models agree, as we observe in real systems owing to the “bulge-halo” conspiracy, H0 is recovered precisely and accurately by both models. If the two models disagree, as in the case of some pathological models illustrated here, the TDCOSMO procedure either discriminates between them through the goodness of fit, or it accounts for the discrepancy in the final error bars provided by the analysis. This conclusion is consistent with a reanalysis of six of the TDCOSMO (real) lenses: the composite model yields H0 = 74.0−1.8+1.7 km s−1 Mpc−1, while the power-law model yields 74.2−1.6+1.6 km s−1 Mpc−1. In conclusion, we find no evidence of bias or errors larger than the current statistical uncertainties reported by TDCOSMO.
doi_str_mv 10.1051/0004-6361/201937351
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2487145932</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2487145932</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1891-24fe40a8670dc729bbfa7d85159152e3780708e6c9ad9ccc77f2066246fc1e203</originalsourceid><addsrcrecordid>eNo9jUtrAjEURi_SYqe2v8Bl16n3keQmSxn7AsssatcyZpKFiK_R_69g6erjwOF8AGPCV0JHE0S0xounCSNFUXE0gIqssEG1_g6qf-MBHvt-fUWmIBUMF7O6-flunuC-tJs-P__tCH7f3xb1p5k3H1_1dG4ShUiGbckW2-AVu6QcV6vSahccuUiOs2hAxZB9im0XU0qqhdF7tr4kyowygpdbd3_cHc65Py3Xu_Nxe71csg1K1kVhuQAbCjS9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2487145932</pqid></control><display><type>article</type><title>TDCOSMO</title><source>Bacon EDP Sciences France Licence nationale-ISTEX-PS-Journals-PFISTEX</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>EDP Sciences</source><creator>Millon, M ; Galan, A ; Courbin, F ; Treu, T ; Suyu, S H ; Ding, X ; Birrer, S ; G. C.-F. Chen ; Shajib, A J ; Sluse, D ; Wong, K C ; Agnello, A ; Auger, M W ; Buckley-Geer, E J ; Chan, J H H ; Collett, T ; Fassnacht, C D ; Hilbert, S ; Koopmans, L V E ; Motta, V ; Mukherjee, S ; Rusu, C E ; Sonnenfeld, A ; Spiniello, C ; Van de Vyvere, L</creator><creatorcontrib>Millon, M ; Galan, A ; Courbin, F ; Treu, T ; Suyu, S H ; Ding, X ; Birrer, S ; G. C.-F. Chen ; Shajib, A J ; Sluse, D ; Wong, K C ; Agnello, A ; Auger, M W ; Buckley-Geer, E J ; Chan, J H H ; Collett, T ; Fassnacht, C D ; Hilbert, S ; Koopmans, L V E ; Motta, V ; Mukherjee, S ; Rusu, C E ; Sonnenfeld, A ; Spiniello, C ; Van de Vyvere, L</creatorcontrib><description>Time-delay cosmography of lensed quasars has achieved 2.4% precision on the measurement of the Hubble constant, H0. As part of an ongoing effort to uncover and control systematic uncertainties, we investigate three potential sources: 1- stellar kinematics, 2- line-of-sight effects, and 3- the deflector mass model. To meet this goal in a quantitative way, we reproduced the H0LiCOW/SHARP/STRIDES (hereafter TDCOSMO) procedures on a set of real and simulated data, and we find the following. First, stellar kinematics cannot be a dominant source of error or bias since we find that a systematic change of 10% of measured velocity dispersion leads to only a 0.7% shift on H0 from the seven lenses analyzed by TDCOSMO. Second, we find no bias to arise from incorrect estimation of the line-of-sight effects. Third, we show that elliptical composite (stars + dark matter halo), power-law, and cored power-law mass profiles have the flexibility to yield a broad range in H0 values. However, the TDCOSMO procedures that model the data with both composite and power-law mass profiles are informative. If the models agree, as we observe in real systems owing to the “bulge-halo” conspiracy, H0 is recovered precisely and accurately by both models. If the two models disagree, as in the case of some pathological models illustrated here, the TDCOSMO procedure either discriminates between them through the goodness of fit, or it accounts for the discrepancy in the final error bars provided by the analysis. This conclusion is consistent with a reanalysis of six of the TDCOSMO (real) lenses: the composite model yields H0 = 74.0−1.8+1.7 km s−1 Mpc−1, while the power-law model yields 74.2−1.6+1.6 km s−1 Mpc−1. In conclusion, we find no evidence of bias or errors larger than the current statistical uncertainties reported by TDCOSMO.</description><identifier>ISSN: 0004-6361</identifier><identifier>EISSN: 1432-0746</identifier><identifier>DOI: 10.1051/0004-6361/201937351</identifier><language>eng</language><publisher>Heidelberg: EDP Sciences</publisher><subject>Bias ; Dark matter ; Error analysis ; Goodness of fit ; Hubble constant ; Kinematics ; Lenses ; Line of sight ; Power law ; Quasars ; Stellar kinematics ; Uncertainty</subject><ispartof>Astronomy and astrophysics (Berlin), 2020-07, Vol.639</ispartof><rights>Copyright EDP Sciences Jul 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1891-24fe40a8670dc729bbfa7d85159152e3780708e6c9ad9ccc77f2066246fc1e203</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Millon, M</creatorcontrib><creatorcontrib>Galan, A</creatorcontrib><creatorcontrib>Courbin, F</creatorcontrib><creatorcontrib>Treu, T</creatorcontrib><creatorcontrib>Suyu, S H</creatorcontrib><creatorcontrib>Ding, X</creatorcontrib><creatorcontrib>Birrer, S</creatorcontrib><creatorcontrib>G. C.-F. Chen</creatorcontrib><creatorcontrib>Shajib, A J</creatorcontrib><creatorcontrib>Sluse, D</creatorcontrib><creatorcontrib>Wong, K C</creatorcontrib><creatorcontrib>Agnello, A</creatorcontrib><creatorcontrib>Auger, M W</creatorcontrib><creatorcontrib>Buckley-Geer, E J</creatorcontrib><creatorcontrib>Chan, J H H</creatorcontrib><creatorcontrib>Collett, T</creatorcontrib><creatorcontrib>Fassnacht, C D</creatorcontrib><creatorcontrib>Hilbert, S</creatorcontrib><creatorcontrib>Koopmans, L V E</creatorcontrib><creatorcontrib>Motta, V</creatorcontrib><creatorcontrib>Mukherjee, S</creatorcontrib><creatorcontrib>Rusu, C E</creatorcontrib><creatorcontrib>Sonnenfeld, A</creatorcontrib><creatorcontrib>Spiniello, C</creatorcontrib><creatorcontrib>Van de Vyvere, L</creatorcontrib><title>TDCOSMO</title><title>Astronomy and astrophysics (Berlin)</title><description>Time-delay cosmography of lensed quasars has achieved 2.4% precision on the measurement of the Hubble constant, H0. As part of an ongoing effort to uncover and control systematic uncertainties, we investigate three potential sources: 1- stellar kinematics, 2- line-of-sight effects, and 3- the deflector mass model. To meet this goal in a quantitative way, we reproduced the H0LiCOW/SHARP/STRIDES (hereafter TDCOSMO) procedures on a set of real and simulated data, and we find the following. First, stellar kinematics cannot be a dominant source of error or bias since we find that a systematic change of 10% of measured velocity dispersion leads to only a 0.7% shift on H0 from the seven lenses analyzed by TDCOSMO. Second, we find no bias to arise from incorrect estimation of the line-of-sight effects. Third, we show that elliptical composite (stars + dark matter halo), power-law, and cored power-law mass profiles have the flexibility to yield a broad range in H0 values. However, the TDCOSMO procedures that model the data with both composite and power-law mass profiles are informative. If the models agree, as we observe in real systems owing to the “bulge-halo” conspiracy, H0 is recovered precisely and accurately by both models. If the two models disagree, as in the case of some pathological models illustrated here, the TDCOSMO procedure either discriminates between them through the goodness of fit, or it accounts for the discrepancy in the final error bars provided by the analysis. This conclusion is consistent with a reanalysis of six of the TDCOSMO (real) lenses: the composite model yields H0 = 74.0−1.8+1.7 km s−1 Mpc−1, while the power-law model yields 74.2−1.6+1.6 km s−1 Mpc−1. In conclusion, we find no evidence of bias or errors larger than the current statistical uncertainties reported by TDCOSMO.</description><subject>Bias</subject><subject>Dark matter</subject><subject>Error analysis</subject><subject>Goodness of fit</subject><subject>Hubble constant</subject><subject>Kinematics</subject><subject>Lenses</subject><subject>Line of sight</subject><subject>Power law</subject><subject>Quasars</subject><subject>Stellar kinematics</subject><subject>Uncertainty</subject><issn>0004-6361</issn><issn>1432-0746</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9jUtrAjEURi_SYqe2v8Bl16n3keQmSxn7AsssatcyZpKFiK_R_69g6erjwOF8AGPCV0JHE0S0xounCSNFUXE0gIqssEG1_g6qf-MBHvt-fUWmIBUMF7O6-flunuC-tJs-P__tCH7f3xb1p5k3H1_1dG4ShUiGbckW2-AVu6QcV6vSahccuUiOs2hAxZB9im0XU0qqhdF7tr4kyowygpdbd3_cHc65Py3Xu_Nxe71csg1K1kVhuQAbCjS9</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Millon, M</creator><creator>Galan, A</creator><creator>Courbin, F</creator><creator>Treu, T</creator><creator>Suyu, S H</creator><creator>Ding, X</creator><creator>Birrer, S</creator><creator>G. C.-F. Chen</creator><creator>Shajib, A J</creator><creator>Sluse, D</creator><creator>Wong, K C</creator><creator>Agnello, A</creator><creator>Auger, M W</creator><creator>Buckley-Geer, E J</creator><creator>Chan, J H H</creator><creator>Collett, T</creator><creator>Fassnacht, C D</creator><creator>Hilbert, S</creator><creator>Koopmans, L V E</creator><creator>Motta, V</creator><creator>Mukherjee, S</creator><creator>Rusu, C E</creator><creator>Sonnenfeld, A</creator><creator>Spiniello, C</creator><creator>Van de Vyvere, L</creator><general>EDP Sciences</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20200701</creationdate><title>TDCOSMO</title><author>Millon, M ; Galan, A ; Courbin, F ; Treu, T ; Suyu, S H ; Ding, X ; Birrer, S ; G. C.-F. Chen ; Shajib, A J ; Sluse, D ; Wong, K C ; Agnello, A ; Auger, M W ; Buckley-Geer, E J ; Chan, J H H ; Collett, T ; Fassnacht, C D ; Hilbert, S ; Koopmans, L V E ; Motta, V ; Mukherjee, S ; Rusu, C E ; Sonnenfeld, A ; Spiniello, C ; Van de Vyvere, L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1891-24fe40a8670dc729bbfa7d85159152e3780708e6c9ad9ccc77f2066246fc1e203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bias</topic><topic>Dark matter</topic><topic>Error analysis</topic><topic>Goodness of fit</topic><topic>Hubble constant</topic><topic>Kinematics</topic><topic>Lenses</topic><topic>Line of sight</topic><topic>Power law</topic><topic>Quasars</topic><topic>Stellar kinematics</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Millon, M</creatorcontrib><creatorcontrib>Galan, A</creatorcontrib><creatorcontrib>Courbin, F</creatorcontrib><creatorcontrib>Treu, T</creatorcontrib><creatorcontrib>Suyu, S H</creatorcontrib><creatorcontrib>Ding, X</creatorcontrib><creatorcontrib>Birrer, S</creatorcontrib><creatorcontrib>G. C.-F. Chen</creatorcontrib><creatorcontrib>Shajib, A J</creatorcontrib><creatorcontrib>Sluse, D</creatorcontrib><creatorcontrib>Wong, K C</creatorcontrib><creatorcontrib>Agnello, A</creatorcontrib><creatorcontrib>Auger, M W</creatorcontrib><creatorcontrib>Buckley-Geer, E J</creatorcontrib><creatorcontrib>Chan, J H H</creatorcontrib><creatorcontrib>Collett, T</creatorcontrib><creatorcontrib>Fassnacht, C D</creatorcontrib><creatorcontrib>Hilbert, S</creatorcontrib><creatorcontrib>Koopmans, L V E</creatorcontrib><creatorcontrib>Motta, V</creatorcontrib><creatorcontrib>Mukherjee, S</creatorcontrib><creatorcontrib>Rusu, C E</creatorcontrib><creatorcontrib>Sonnenfeld, A</creatorcontrib><creatorcontrib>Spiniello, C</creatorcontrib><creatorcontrib>Van de Vyvere, L</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Astronomy and astrophysics (Berlin)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Millon, M</au><au>Galan, A</au><au>Courbin, F</au><au>Treu, T</au><au>Suyu, S H</au><au>Ding, X</au><au>Birrer, S</au><au>G. C.-F. Chen</au><au>Shajib, A J</au><au>Sluse, D</au><au>Wong, K C</au><au>Agnello, A</au><au>Auger, M W</au><au>Buckley-Geer, E J</au><au>Chan, J H H</au><au>Collett, T</au><au>Fassnacht, C D</au><au>Hilbert, S</au><au>Koopmans, L V E</au><au>Motta, V</au><au>Mukherjee, S</au><au>Rusu, C E</au><au>Sonnenfeld, A</au><au>Spiniello, C</au><au>Van de Vyvere, L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>TDCOSMO</atitle><jtitle>Astronomy and astrophysics (Berlin)</jtitle><date>2020-07-01</date><risdate>2020</risdate><volume>639</volume><issn>0004-6361</issn><eissn>1432-0746</eissn><abstract>Time-delay cosmography of lensed quasars has achieved 2.4% precision on the measurement of the Hubble constant, H0. As part of an ongoing effort to uncover and control systematic uncertainties, we investigate three potential sources: 1- stellar kinematics, 2- line-of-sight effects, and 3- the deflector mass model. To meet this goal in a quantitative way, we reproduced the H0LiCOW/SHARP/STRIDES (hereafter TDCOSMO) procedures on a set of real and simulated data, and we find the following. First, stellar kinematics cannot be a dominant source of error or bias since we find that a systematic change of 10% of measured velocity dispersion leads to only a 0.7% shift on H0 from the seven lenses analyzed by TDCOSMO. Second, we find no bias to arise from incorrect estimation of the line-of-sight effects. Third, we show that elliptical composite (stars + dark matter halo), power-law, and cored power-law mass profiles have the flexibility to yield a broad range in H0 values. However, the TDCOSMO procedures that model the data with both composite and power-law mass profiles are informative. If the models agree, as we observe in real systems owing to the “bulge-halo” conspiracy, H0 is recovered precisely and accurately by both models. If the two models disagree, as in the case of some pathological models illustrated here, the TDCOSMO procedure either discriminates between them through the goodness of fit, or it accounts for the discrepancy in the final error bars provided by the analysis. This conclusion is consistent with a reanalysis of six of the TDCOSMO (real) lenses: the composite model yields H0 = 74.0−1.8+1.7 km s−1 Mpc−1, while the power-law model yields 74.2−1.6+1.6 km s−1 Mpc−1. In conclusion, we find no evidence of bias or errors larger than the current statistical uncertainties reported by TDCOSMO.</abstract><cop>Heidelberg</cop><pub>EDP Sciences</pub><doi>10.1051/0004-6361/201937351</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-6361
ispartof Astronomy and astrophysics (Berlin), 2020-07, Vol.639
issn 0004-6361
1432-0746
language eng
recordid cdi_proquest_journals_2487145932
source Bacon EDP Sciences France Licence nationale-ISTEX-PS-Journals-PFISTEX; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; EDP Sciences
subjects Bias
Dark matter
Error analysis
Goodness of fit
Hubble constant
Kinematics
Lenses
Line of sight
Power law
Quasars
Stellar kinematics
Uncertainty
title TDCOSMO
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T20%3A19%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=TDCOSMO&rft.jtitle=Astronomy%20and%20astrophysics%20(Berlin)&rft.au=Millon,%20M&rft.date=2020-07-01&rft.volume=639&rft.issn=0004-6361&rft.eissn=1432-0746&rft_id=info:doi/10.1051/0004-6361/201937351&rft_dat=%3Cproquest%3E2487145932%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2487145932&rft_id=info:pmid/&rfr_iscdi=true