Learning solutions to a Cauchy problem for the modified Helmholtz equations using LS-SVM

Purpose The purpose of this paper is to develop a mesh-free algorithm based on the least square support vector machines method for numerical simulation of the modified Helmholtz equations. Design/methodology/approach The proposed method deals with a Cauchy problem for the modified Helmholtz equation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Engineering computations 2021-02, Vol.38 (2), p.1024-1036
Hauptverfasser: Wu, Ziku, Han, Xiaoming, Li, GuoFeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1036
container_issue 2
container_start_page 1024
container_title Engineering computations
container_volume 38
creator Wu, Ziku
Han, Xiaoming
Li, GuoFeng
description Purpose The purpose of this paper is to develop a mesh-free algorithm based on the least square support vector machines method for numerical simulation of the modified Helmholtz equations. Design/methodology/approach The proposed method deals with a Cauchy problem for the modified Helmholtz equations. The algorithm converts the problem into a quadratic programming. It can be divided into three steps. First, some training points are allocated. Then, an approximate function is constructed. Finally, the shape parameters are estimated. Findings The proposed method's stability is discussed. Numerical experiments are conducted to check the efficiency of the algorithm. The proposed method is found to feasible for the ill-posed problems of the modified Helmholtz equations. Originality/value The originality lies in that the proposed method is applied to solve the modified Helmholtz equations for the first time, and the expected results are obtained.
doi_str_mv 10.1108/EC-04-2019-0168
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2487089596</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2487089596</sourcerecordid><originalsourceid>FETCH-LOGICAL-c262t-4cacd4cb8216d3440b0c796dbe46354123ead7edad300acf239df4aad1b36f423</originalsourceid><addsrcrecordid>eNptkD1PwzAURS0EEqUws1piNn3-aJyMKCoUKYihgNgsx3ZoqqRu7WQov55EYUFiess9910dhG4p3FMK6WKVExCEAc0I0CQ9QzMqlymRIOU5mgFLBBEC6CW6inEHAJJzmKHPwumwr_dfOPqm72q_j7jzWONc92Z7wofgy8a1uPIBd1uHW2_rqnYWr13Tbn3TfWN37PUE9nEsKjZk8_FyjS4q3UR383vn6P1x9ZavSfH69Jw_FMSwhHVEGG2sMGXKaGL5MLAEI7PElk4kfCko405b6ay2HECbivHMVkJrS0ueVILxObqbeoelx97FTu18H_bDS8VEKiHNllkypBZTygQfY3CVOoS61eGkKKhRn1rlCoQa9alR30DcT4RrXdCN_Qf445v_AJxCcHw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2487089596</pqid></control><display><type>article</type><title>Learning solutions to a Cauchy problem for the modified Helmholtz equations using LS-SVM</title><source>Emerald Journals</source><creator>Wu, Ziku ; Han, Xiaoming ; Li, GuoFeng</creator><creatorcontrib>Wu, Ziku ; Han, Xiaoming ; Li, GuoFeng</creatorcontrib><description>Purpose The purpose of this paper is to develop a mesh-free algorithm based on the least square support vector machines method for numerical simulation of the modified Helmholtz equations. Design/methodology/approach The proposed method deals with a Cauchy problem for the modified Helmholtz equations. The algorithm converts the problem into a quadratic programming. It can be divided into three steps. First, some training points are allocated. Then, an approximate function is constructed. Finally, the shape parameters are estimated. Findings The proposed method's stability is discussed. Numerical experiments are conducted to check the efficiency of the algorithm. The proposed method is found to feasible for the ill-posed problems of the modified Helmholtz equations. Originality/value The originality lies in that the proposed method is applied to solve the modified Helmholtz equations for the first time, and the expected results are obtained.</description><identifier>ISSN: 0264-4401</identifier><identifier>EISSN: 1758-7077</identifier><identifier>DOI: 10.1108/EC-04-2019-0168</identifier><language>eng</language><publisher>Bradford: Emerald Publishing Limited</publisher><subject>Algorithms ; Cauchy problems ; Design modifications ; Finite element method ; Helmholtz equations ; Ill posed problems ; Meshless methods ; Numerical analysis ; Parameter estimation ; Quadratic programming ; Regularization methods ; Support vector machines</subject><ispartof>Engineering computations, 2021-02, Vol.38 (2), p.1024-1036</ispartof><rights>Emerald Publishing Limited</rights><rights>Emerald Publishing Limited 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c262t-4cacd4cb8216d3440b0c796dbe46354123ead7edad300acf239df4aad1b36f423</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.emerald.com/insight/content/doi/10.1108/EC-04-2019-0168/full/html$$EHTML$$P50$$Gemerald$$H</linktohtml><link.rule.ids>314,780,784,966,11634,27923,27924,52688</link.rule.ids></links><search><creatorcontrib>Wu, Ziku</creatorcontrib><creatorcontrib>Han, Xiaoming</creatorcontrib><creatorcontrib>Li, GuoFeng</creatorcontrib><title>Learning solutions to a Cauchy problem for the modified Helmholtz equations using LS-SVM</title><title>Engineering computations</title><description>Purpose The purpose of this paper is to develop a mesh-free algorithm based on the least square support vector machines method for numerical simulation of the modified Helmholtz equations. Design/methodology/approach The proposed method deals with a Cauchy problem for the modified Helmholtz equations. The algorithm converts the problem into a quadratic programming. It can be divided into three steps. First, some training points are allocated. Then, an approximate function is constructed. Finally, the shape parameters are estimated. Findings The proposed method's stability is discussed. Numerical experiments are conducted to check the efficiency of the algorithm. The proposed method is found to feasible for the ill-posed problems of the modified Helmholtz equations. Originality/value The originality lies in that the proposed method is applied to solve the modified Helmholtz equations for the first time, and the expected results are obtained.</description><subject>Algorithms</subject><subject>Cauchy problems</subject><subject>Design modifications</subject><subject>Finite element method</subject><subject>Helmholtz equations</subject><subject>Ill posed problems</subject><subject>Meshless methods</subject><subject>Numerical analysis</subject><subject>Parameter estimation</subject><subject>Quadratic programming</subject><subject>Regularization methods</subject><subject>Support vector machines</subject><issn>0264-4401</issn><issn>1758-7077</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNptkD1PwzAURS0EEqUws1piNn3-aJyMKCoUKYihgNgsx3ZoqqRu7WQov55EYUFiess9910dhG4p3FMK6WKVExCEAc0I0CQ9QzMqlymRIOU5mgFLBBEC6CW6inEHAJJzmKHPwumwr_dfOPqm72q_j7jzWONc92Z7wofgy8a1uPIBd1uHW2_rqnYWr13Tbn3TfWN37PUE9nEsKjZk8_FyjS4q3UR383vn6P1x9ZavSfH69Jw_FMSwhHVEGG2sMGXKaGL5MLAEI7PElk4kfCko405b6ay2HECbivHMVkJrS0ueVILxObqbeoelx97FTu18H_bDS8VEKiHNllkypBZTygQfY3CVOoS61eGkKKhRn1rlCoQa9alR30DcT4RrXdCN_Qf445v_AJxCcHw</recordid><startdate>20210208</startdate><enddate>20210208</enddate><creator>Wu, Ziku</creator><creator>Han, Xiaoming</creator><creator>Li, GuoFeng</creator><general>Emerald Publishing Limited</general><general>Emerald Group Publishing Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L.0</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20210208</creationdate><title>Learning solutions to a Cauchy problem for the modified Helmholtz equations using LS-SVM</title><author>Wu, Ziku ; Han, Xiaoming ; Li, GuoFeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c262t-4cacd4cb8216d3440b0c796dbe46354123ead7edad300acf239df4aad1b36f423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Cauchy problems</topic><topic>Design modifications</topic><topic>Finite element method</topic><topic>Helmholtz equations</topic><topic>Ill posed problems</topic><topic>Meshless methods</topic><topic>Numerical analysis</topic><topic>Parameter estimation</topic><topic>Quadratic programming</topic><topic>Regularization methods</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Ziku</creatorcontrib><creatorcontrib>Han, Xiaoming</creatorcontrib><creatorcontrib>Li, GuoFeng</creatorcontrib><collection>CrossRef</collection><collection>Global News &amp; ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Engineering computations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Ziku</au><au>Han, Xiaoming</au><au>Li, GuoFeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Learning solutions to a Cauchy problem for the modified Helmholtz equations using LS-SVM</atitle><jtitle>Engineering computations</jtitle><date>2021-02-08</date><risdate>2021</risdate><volume>38</volume><issue>2</issue><spage>1024</spage><epage>1036</epage><pages>1024-1036</pages><issn>0264-4401</issn><eissn>1758-7077</eissn><abstract>Purpose The purpose of this paper is to develop a mesh-free algorithm based on the least square support vector machines method for numerical simulation of the modified Helmholtz equations. Design/methodology/approach The proposed method deals with a Cauchy problem for the modified Helmholtz equations. The algorithm converts the problem into a quadratic programming. It can be divided into three steps. First, some training points are allocated. Then, an approximate function is constructed. Finally, the shape parameters are estimated. Findings The proposed method's stability is discussed. Numerical experiments are conducted to check the efficiency of the algorithm. The proposed method is found to feasible for the ill-posed problems of the modified Helmholtz equations. Originality/value The originality lies in that the proposed method is applied to solve the modified Helmholtz equations for the first time, and the expected results are obtained.</abstract><cop>Bradford</cop><pub>Emerald Publishing Limited</pub><doi>10.1108/EC-04-2019-0168</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0264-4401
ispartof Engineering computations, 2021-02, Vol.38 (2), p.1024-1036
issn 0264-4401
1758-7077
language eng
recordid cdi_proquest_journals_2487089596
source Emerald Journals
subjects Algorithms
Cauchy problems
Design modifications
Finite element method
Helmholtz equations
Ill posed problems
Meshless methods
Numerical analysis
Parameter estimation
Quadratic programming
Regularization methods
Support vector machines
title Learning solutions to a Cauchy problem for the modified Helmholtz equations using LS-SVM
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T22%3A59%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Learning%20solutions%20to%20a%20Cauchy%20problem%20for%20the%20modified%20Helmholtz%20equations%20using%20LS-SVM&rft.jtitle=Engineering%20computations&rft.au=Wu,%20Ziku&rft.date=2021-02-08&rft.volume=38&rft.issue=2&rft.spage=1024&rft.epage=1036&rft.pages=1024-1036&rft.issn=0264-4401&rft.eissn=1758-7077&rft_id=info:doi/10.1108/EC-04-2019-0168&rft_dat=%3Cproquest_cross%3E2487089596%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2487089596&rft_id=info:pmid/&rfr_iscdi=true