Empirical Mode Decomposition, Viterbi and Wavelets Applied to Electrocardiogram Noise Removal

The electrocardiogram (ECG) signal is generally used as a cardiovascular disease diagnostic tool. The accuracy of the diagnosis is directly related to the quality of the ECG signal, which can be corrupted by several sources of noises such as, for example, baseline wanders and power line interference...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Circuits, systems, and signal processing systems, and signal processing, 2021-02, Vol.40 (2), p.691-718
Hauptverfasser: Vargas, Regis Nunes, Veiga, Antônio Cláudio Paschoarelli
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 718
container_issue 2
container_start_page 691
container_title Circuits, systems, and signal processing
container_volume 40
creator Vargas, Regis Nunes
Veiga, Antônio Cláudio Paschoarelli
description The electrocardiogram (ECG) signal is generally used as a cardiovascular disease diagnostic tool. The accuracy of the diagnosis is directly related to the quality of the ECG signal, which can be corrupted by several sources of noises such as, for example, baseline wanders and power line interference. This paper proposes a new ECG denoising methodology based on wavelets, empirical mode decomposition (EMD), and Viterbi algorithm. The EMD decomposes the signal in intrinsic mode functions (IMFs), then each one of these IMFs is processed by the discrete wavelet transform through a decision process based on the Viterbi algorithm. We apply the proposed method to a synthetic ECG signal and three real ECG signals. The simulations results show that this novel methodology outperforms denoising schemes based on wavelets, empirical mode decomposition, and total variation.
doi_str_mv 10.1007/s00034-020-01489-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2487069987</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2487069987</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-7fdd62c80939d4bee02e9db0542675bc5a54d3142d5c48426ccb74a53695c5cc3</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOI7-AVcBt1Zv0qRNloOODxgVxNdGQppkhgxtU5POgP_eagV3ri4czncufAgdEzgjAOV5AoCcZUAhA8KEzPgOmhCek4yLUuyiCdBSZCDI2z46SGkNQCSTdILe503noze6xnfBOnzpTGi6kHzvQ3uKX3zvYuWxbi1-1VtXuz7hWdfV3lncBzyvneljMDpaH1ZRN_g--OTwo2vCVteHaG-p6-SOfu8UPV_Nny5ussXD9e3FbJGZnMg-K5fWFtQIkLm0rHIOqJO2As5oUfLKcM2ZzQmjlhsmhtCYqmSa54XkhhuTT9HJuNvF8LFxqVfrsInt8FJRJkoopBTl0KJjy8SQUnRL1UXf6PipCKhvjWrUqAaN6kej4gOUj1Aayu3Kxb_pf6gvCFt1uQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2487069987</pqid></control><display><type>article</type><title>Empirical Mode Decomposition, Viterbi and Wavelets Applied to Electrocardiogram Noise Removal</title><source>Springer Nature - Complete Springer Journals</source><creator>Vargas, Regis Nunes ; Veiga, Antônio Cláudio Paschoarelli</creator><creatorcontrib>Vargas, Regis Nunes ; Veiga, Antônio Cláudio Paschoarelli</creatorcontrib><description>The electrocardiogram (ECG) signal is generally used as a cardiovascular disease diagnostic tool. The accuracy of the diagnosis is directly related to the quality of the ECG signal, which can be corrupted by several sources of noises such as, for example, baseline wanders and power line interference. This paper proposes a new ECG denoising methodology based on wavelets, empirical mode decomposition (EMD), and Viterbi algorithm. The EMD decomposes the signal in intrinsic mode functions (IMFs), then each one of these IMFs is processed by the discrete wavelet transform through a decision process based on the Viterbi algorithm. We apply the proposed method to a synthetic ECG signal and three real ECG signals. The simulations results show that this novel methodology outperforms denoising schemes based on wavelets, empirical mode decomposition, and total variation.</description><identifier>ISSN: 0278-081X</identifier><identifier>EISSN: 1531-5878</identifier><identifier>DOI: 10.1007/s00034-020-01489-5</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Circuits and Systems ; Decomposition ; Diagnostic software ; Diagnostic systems ; Discrete Wavelet Transform ; Electrical Engineering ; Electrocardiography ; Electronics and Microelectronics ; Engineering ; Instrumentation ; Noise reduction ; Power lines ; Signal quality ; Signal,Image and Speech Processing ; Viterbi algorithm detectors ; Wavelet transforms</subject><ispartof>Circuits, systems, and signal processing, 2021-02, Vol.40 (2), p.691-718</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-7fdd62c80939d4bee02e9db0542675bc5a54d3142d5c48426ccb74a53695c5cc3</citedby><cites>FETCH-LOGICAL-c319t-7fdd62c80939d4bee02e9db0542675bc5a54d3142d5c48426ccb74a53695c5cc3</cites><orcidid>0000-0001-7860-1197</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00034-020-01489-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00034-020-01489-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27915,27916,41479,42548,51310</link.rule.ids></links><search><creatorcontrib>Vargas, Regis Nunes</creatorcontrib><creatorcontrib>Veiga, Antônio Cláudio Paschoarelli</creatorcontrib><title>Empirical Mode Decomposition, Viterbi and Wavelets Applied to Electrocardiogram Noise Removal</title><title>Circuits, systems, and signal processing</title><addtitle>Circuits Syst Signal Process</addtitle><description>The electrocardiogram (ECG) signal is generally used as a cardiovascular disease diagnostic tool. The accuracy of the diagnosis is directly related to the quality of the ECG signal, which can be corrupted by several sources of noises such as, for example, baseline wanders and power line interference. This paper proposes a new ECG denoising methodology based on wavelets, empirical mode decomposition (EMD), and Viterbi algorithm. The EMD decomposes the signal in intrinsic mode functions (IMFs), then each one of these IMFs is processed by the discrete wavelet transform through a decision process based on the Viterbi algorithm. We apply the proposed method to a synthetic ECG signal and three real ECG signals. The simulations results show that this novel methodology outperforms denoising schemes based on wavelets, empirical mode decomposition, and total variation.</description><subject>Algorithms</subject><subject>Circuits and Systems</subject><subject>Decomposition</subject><subject>Diagnostic software</subject><subject>Diagnostic systems</subject><subject>Discrete Wavelet Transform</subject><subject>Electrical Engineering</subject><subject>Electrocardiography</subject><subject>Electronics and Microelectronics</subject><subject>Engineering</subject><subject>Instrumentation</subject><subject>Noise reduction</subject><subject>Power lines</subject><subject>Signal quality</subject><subject>Signal,Image and Speech Processing</subject><subject>Viterbi algorithm detectors</subject><subject>Wavelet transforms</subject><issn>0278-081X</issn><issn>1531-5878</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kEtLxDAUhYMoOI7-AVcBt1Zv0qRNloOODxgVxNdGQppkhgxtU5POgP_eagV3ri4czncufAgdEzgjAOV5AoCcZUAhA8KEzPgOmhCek4yLUuyiCdBSZCDI2z46SGkNQCSTdILe503noze6xnfBOnzpTGi6kHzvQ3uKX3zvYuWxbi1-1VtXuz7hWdfV3lncBzyvneljMDpaH1ZRN_g--OTwo2vCVteHaG-p6-SOfu8UPV_Nny5ussXD9e3FbJGZnMg-K5fWFtQIkLm0rHIOqJO2As5oUfLKcM2ZzQmjlhsmhtCYqmSa54XkhhuTT9HJuNvF8LFxqVfrsInt8FJRJkoopBTl0KJjy8SQUnRL1UXf6PipCKhvjWrUqAaN6kej4gOUj1Aayu3Kxb_pf6gvCFt1uQ</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Vargas, Regis Nunes</creator><creator>Veiga, Antônio Cláudio Paschoarelli</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7SP</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0001-7860-1197</orcidid></search><sort><creationdate>20210201</creationdate><title>Empirical Mode Decomposition, Viterbi and Wavelets Applied to Electrocardiogram Noise Removal</title><author>Vargas, Regis Nunes ; Veiga, Antônio Cláudio Paschoarelli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-7fdd62c80939d4bee02e9db0542675bc5a54d3142d5c48426ccb74a53695c5cc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Circuits and Systems</topic><topic>Decomposition</topic><topic>Diagnostic software</topic><topic>Diagnostic systems</topic><topic>Discrete Wavelet Transform</topic><topic>Electrical Engineering</topic><topic>Electrocardiography</topic><topic>Electronics and Microelectronics</topic><topic>Engineering</topic><topic>Instrumentation</topic><topic>Noise reduction</topic><topic>Power lines</topic><topic>Signal quality</topic><topic>Signal,Image and Speech Processing</topic><topic>Viterbi algorithm detectors</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vargas, Regis Nunes</creatorcontrib><creatorcontrib>Veiga, Antônio Cláudio Paschoarelli</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Circuits, systems, and signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vargas, Regis Nunes</au><au>Veiga, Antônio Cláudio Paschoarelli</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Empirical Mode Decomposition, Viterbi and Wavelets Applied to Electrocardiogram Noise Removal</atitle><jtitle>Circuits, systems, and signal processing</jtitle><stitle>Circuits Syst Signal Process</stitle><date>2021-02-01</date><risdate>2021</risdate><volume>40</volume><issue>2</issue><spage>691</spage><epage>718</epage><pages>691-718</pages><issn>0278-081X</issn><eissn>1531-5878</eissn><abstract>The electrocardiogram (ECG) signal is generally used as a cardiovascular disease diagnostic tool. The accuracy of the diagnosis is directly related to the quality of the ECG signal, which can be corrupted by several sources of noises such as, for example, baseline wanders and power line interference. This paper proposes a new ECG denoising methodology based on wavelets, empirical mode decomposition (EMD), and Viterbi algorithm. The EMD decomposes the signal in intrinsic mode functions (IMFs), then each one of these IMFs is processed by the discrete wavelet transform through a decision process based on the Viterbi algorithm. We apply the proposed method to a synthetic ECG signal and three real ECG signals. The simulations results show that this novel methodology outperforms denoising schemes based on wavelets, empirical mode decomposition, and total variation.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s00034-020-01489-5</doi><tpages>28</tpages><orcidid>https://orcid.org/0000-0001-7860-1197</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0278-081X
ispartof Circuits, systems, and signal processing, 2021-02, Vol.40 (2), p.691-718
issn 0278-081X
1531-5878
language eng
recordid cdi_proquest_journals_2487069987
source Springer Nature - Complete Springer Journals
subjects Algorithms
Circuits and Systems
Decomposition
Diagnostic software
Diagnostic systems
Discrete Wavelet Transform
Electrical Engineering
Electrocardiography
Electronics and Microelectronics
Engineering
Instrumentation
Noise reduction
Power lines
Signal quality
Signal,Image and Speech Processing
Viterbi algorithm detectors
Wavelet transforms
title Empirical Mode Decomposition, Viterbi and Wavelets Applied to Electrocardiogram Noise Removal
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T04%3A56%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Empirical%20Mode%20Decomposition,%20Viterbi%20and%20Wavelets%20Applied%20to%20Electrocardiogram%20Noise%20Removal&rft.jtitle=Circuits,%20systems,%20and%20signal%20processing&rft.au=Vargas,%20Regis%20Nunes&rft.date=2021-02-01&rft.volume=40&rft.issue=2&rft.spage=691&rft.epage=718&rft.pages=691-718&rft.issn=0278-081X&rft.eissn=1531-5878&rft_id=info:doi/10.1007/s00034-020-01489-5&rft_dat=%3Cproquest_cross%3E2487069987%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2487069987&rft_id=info:pmid/&rfr_iscdi=true