Breast Cancer Identification from Patients’ Tweet Streaming Using Machine Learning Solution on Spark
Twitter integrates with streaming data technologies and machine learning to add new value to healthcare. This paper presented a real-time system to predict breast cancer based on streaming patient’s health data from Twitter. The proposed system consists of two major components: developing an offline...
Gespeichert in:
Veröffentlicht in: | Complexity (New York, N.Y.) N.Y.), 2021, Vol.2021 (1) |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | Complexity (New York, N.Y.) |
container_volume | 2021 |
creator | Omran, Nahla F. Abd-el Ghany, Sara F. Saleh, Hager Nabil, Ayman |
description | Twitter integrates with streaming data technologies and machine learning to add new value to healthcare. This paper presented a real-time system to predict breast cancer based on streaming patient’s health data from Twitter. The proposed system consists of two major components: developing an offline building model and an online prediction pipeline. For the first component, we made a correlation between the features to determine the correlation between features and reduce the number of features from the Breast Cancer Wisconsin Diagnostic dataset. Two feature selection algorithms are recursive feature elimination and univariate feature selection algorithms which are applied to features after correlation to select the essential features. Four decision trees, logistic regression, support vector machine, and random forest classifier have been used on features after correlation and feature selection. Also, hyperparameter tuning and cross-validation have been applied with machine learning to optimize models and enhance accuracy. Apache Spark, Apache Kafka, and Twitter Streaming API are used to develop the second component. The best model with the highest accuracy obtained from the first component predicts breast cancer in real time from tweets’ streaming. The results showed that the best model is the random forest classifier which achieved the best accuracy. |
doi_str_mv | 10.1155/2021/6653508 |
format | Article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2487052708</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_baf5acba125248ec8cd18c9c8ae89e09</doaj_id><sourcerecordid>2487052708</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-1ba53ca71927242fbd39a5636850bece2bba7fea03d20e88a1ecc6a833417a3</originalsourceid><addsrcrecordid>eNp9kd1KAzEQhRdRUKt3PsCCl7o2P80me6nFn0JFofU6zGZna2q7qcmW4p2v4ev5JGZb8VIIyXD45kyYkyRnlFxRKkSfEUb7eS64IGovOaKkKDIiWL7f1TLPmFTyMDkOYU4IKXIuj5L6xiOENh1CY9Cnowqb1tbWQGtdk9beLdPnWEc1fH9-pdMNYptO2ti0tM0sfQnd_Qjm1TaYjhF80wkTt1hvDeKZrMC_nSQHNSwCnv6-vWRydzsdPmTjp_vR8HqcmQHhbUZLENyApAWTbMDqsuIFiJznSpASDbKyBFkjEF4xgkoBRWNyUJwPqATeS0Y718rBXK-8XYL_0A6s3grOzzT41poF6hJqAaYEygQbKDTKVFSZwihAVSApotf5zmvl3fsaQ6vnbu2b-HkdG2RcqyQqUpc7yngXgsf6byolustEd5no30wifrHD47oq2Nj_6R85Mo0p</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2487052708</pqid></control><display><type>article</type><title>Breast Cancer Identification from Patients’ Tweet Streaming Using Machine Learning Solution on Spark</title><source>Wiley Online Library</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Omran, Nahla F. ; Abd-el Ghany, Sara F. ; Saleh, Hager ; Nabil, Ayman</creator><contributor>Khalil, Ahmed Mostafa</contributor><creatorcontrib>Omran, Nahla F. ; Abd-el Ghany, Sara F. ; Saleh, Hager ; Nabil, Ayman ; Khalil, Ahmed Mostafa</creatorcontrib><description>Twitter integrates with streaming data technologies and machine learning to add new value to healthcare. This paper presented a real-time system to predict breast cancer based on streaming patient’s health data from Twitter. The proposed system consists of two major components: developing an offline building model and an online prediction pipeline. For the first component, we made a correlation between the features to determine the correlation between features and reduce the number of features from the Breast Cancer Wisconsin Diagnostic dataset. Two feature selection algorithms are recursive feature elimination and univariate feature selection algorithms which are applied to features after correlation to select the essential features. Four decision trees, logistic regression, support vector machine, and random forest classifier have been used on features after correlation and feature selection. Also, hyperparameter tuning and cross-validation have been applied with machine learning to optimize models and enhance accuracy. Apache Spark, Apache Kafka, and Twitter Streaming API are used to develop the second component. The best model with the highest accuracy obtained from the first component predicts breast cancer in real time from tweets’ streaming. The results showed that the best model is the random forest classifier which achieved the best accuracy.</description><identifier>ISSN: 1076-2787</identifier><identifier>EISSN: 1099-0526</identifier><identifier>DOI: 10.1155/2021/6653508</identifier><language>eng</language><publisher>Hoboken: Hindawi</publisher><subject>Algorithms ; Big Data ; Breast cancer ; Classifiers ; Correlation ; Datasets ; Decision making ; Decision trees ; Diagnostic systems ; Disease ; Feature selection ; Internet of Things ; Machine learning ; Model accuracy ; Mutation ; Patients ; Real time ; Social networks ; Support vector machines ; Tumors ; Womens health</subject><ispartof>Complexity (New York, N.Y.), 2021, Vol.2021 (1)</ispartof><rights>Copyright © 2021 Nahla F. Omran et al.</rights><rights>Copyright © 2021 Nahla F. Omran et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-1ba53ca71927242fbd39a5636850bece2bba7fea03d20e88a1ecc6a833417a3</citedby><cites>FETCH-LOGICAL-c403t-1ba53ca71927242fbd39a5636850bece2bba7fea03d20e88a1ecc6a833417a3</cites><orcidid>0000-0001-8362-4350 ; 0000-0001-6184-7107</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,873,2096,4010,27900,27901,27902</link.rule.ids></links><search><contributor>Khalil, Ahmed Mostafa</contributor><creatorcontrib>Omran, Nahla F.</creatorcontrib><creatorcontrib>Abd-el Ghany, Sara F.</creatorcontrib><creatorcontrib>Saleh, Hager</creatorcontrib><creatorcontrib>Nabil, Ayman</creatorcontrib><title>Breast Cancer Identification from Patients’ Tweet Streaming Using Machine Learning Solution on Spark</title><title>Complexity (New York, N.Y.)</title><description>Twitter integrates with streaming data technologies and machine learning to add new value to healthcare. This paper presented a real-time system to predict breast cancer based on streaming patient’s health data from Twitter. The proposed system consists of two major components: developing an offline building model and an online prediction pipeline. For the first component, we made a correlation between the features to determine the correlation between features and reduce the number of features from the Breast Cancer Wisconsin Diagnostic dataset. Two feature selection algorithms are recursive feature elimination and univariate feature selection algorithms which are applied to features after correlation to select the essential features. Four decision trees, logistic regression, support vector machine, and random forest classifier have been used on features after correlation and feature selection. Also, hyperparameter tuning and cross-validation have been applied with machine learning to optimize models and enhance accuracy. Apache Spark, Apache Kafka, and Twitter Streaming API are used to develop the second component. The best model with the highest accuracy obtained from the first component predicts breast cancer in real time from tweets’ streaming. The results showed that the best model is the random forest classifier which achieved the best accuracy.</description><subject>Algorithms</subject><subject>Big Data</subject><subject>Breast cancer</subject><subject>Classifiers</subject><subject>Correlation</subject><subject>Datasets</subject><subject>Decision making</subject><subject>Decision trees</subject><subject>Diagnostic systems</subject><subject>Disease</subject><subject>Feature selection</subject><subject>Internet of Things</subject><subject>Machine learning</subject><subject>Model accuracy</subject><subject>Mutation</subject><subject>Patients</subject><subject>Real time</subject><subject>Social networks</subject><subject>Support vector machines</subject><subject>Tumors</subject><subject>Womens health</subject><issn>1076-2787</issn><issn>1099-0526</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><sourceid>DOA</sourceid><recordid>eNp9kd1KAzEQhRdRUKt3PsCCl7o2P80me6nFn0JFofU6zGZna2q7qcmW4p2v4ev5JGZb8VIIyXD45kyYkyRnlFxRKkSfEUb7eS64IGovOaKkKDIiWL7f1TLPmFTyMDkOYU4IKXIuj5L6xiOENh1CY9Cnowqb1tbWQGtdk9beLdPnWEc1fH9-pdMNYptO2ti0tM0sfQnd_Qjm1TaYjhF80wkTt1hvDeKZrMC_nSQHNSwCnv6-vWRydzsdPmTjp_vR8HqcmQHhbUZLENyApAWTbMDqsuIFiJznSpASDbKyBFkjEF4xgkoBRWNyUJwPqATeS0Y718rBXK-8XYL_0A6s3grOzzT41poF6hJqAaYEygQbKDTKVFSZwihAVSApotf5zmvl3fsaQ6vnbu2b-HkdG2RcqyQqUpc7yngXgsf6byolustEd5no30wifrHD47oq2Nj_6R85Mo0p</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Omran, Nahla F.</creator><creator>Abd-el Ghany, Sara F.</creator><creator>Saleh, Hager</creator><creator>Nabil, Ayman</creator><general>Hindawi</general><general>Hindawi Limited</general><general>Hindawi-Wiley</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8362-4350</orcidid><orcidid>https://orcid.org/0000-0001-6184-7107</orcidid></search><sort><creationdate>2021</creationdate><title>Breast Cancer Identification from Patients’ Tweet Streaming Using Machine Learning Solution on Spark</title><author>Omran, Nahla F. ; Abd-el Ghany, Sara F. ; Saleh, Hager ; Nabil, Ayman</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-1ba53ca71927242fbd39a5636850bece2bba7fea03d20e88a1ecc6a833417a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Big Data</topic><topic>Breast cancer</topic><topic>Classifiers</topic><topic>Correlation</topic><topic>Datasets</topic><topic>Decision making</topic><topic>Decision trees</topic><topic>Diagnostic systems</topic><topic>Disease</topic><topic>Feature selection</topic><topic>Internet of Things</topic><topic>Machine learning</topic><topic>Model accuracy</topic><topic>Mutation</topic><topic>Patients</topic><topic>Real time</topic><topic>Social networks</topic><topic>Support vector machines</topic><topic>Tumors</topic><topic>Womens health</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Omran, Nahla F.</creatorcontrib><creatorcontrib>Abd-el Ghany, Sara F.</creatorcontrib><creatorcontrib>Saleh, Hager</creatorcontrib><creatorcontrib>Nabil, Ayman</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Complexity (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Omran, Nahla F.</au><au>Abd-el Ghany, Sara F.</au><au>Saleh, Hager</au><au>Nabil, Ayman</au><au>Khalil, Ahmed Mostafa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Breast Cancer Identification from Patients’ Tweet Streaming Using Machine Learning Solution on Spark</atitle><jtitle>Complexity (New York, N.Y.)</jtitle><date>2021</date><risdate>2021</risdate><volume>2021</volume><issue>1</issue><issn>1076-2787</issn><eissn>1099-0526</eissn><abstract>Twitter integrates with streaming data technologies and machine learning to add new value to healthcare. This paper presented a real-time system to predict breast cancer based on streaming patient’s health data from Twitter. The proposed system consists of two major components: developing an offline building model and an online prediction pipeline. For the first component, we made a correlation between the features to determine the correlation between features and reduce the number of features from the Breast Cancer Wisconsin Diagnostic dataset. Two feature selection algorithms are recursive feature elimination and univariate feature selection algorithms which are applied to features after correlation to select the essential features. Four decision trees, logistic regression, support vector machine, and random forest classifier have been used on features after correlation and feature selection. Also, hyperparameter tuning and cross-validation have been applied with machine learning to optimize models and enhance accuracy. Apache Spark, Apache Kafka, and Twitter Streaming API are used to develop the second component. The best model with the highest accuracy obtained from the first component predicts breast cancer in real time from tweets’ streaming. The results showed that the best model is the random forest classifier which achieved the best accuracy.</abstract><cop>Hoboken</cop><pub>Hindawi</pub><doi>10.1155/2021/6653508</doi><orcidid>https://orcid.org/0000-0001-8362-4350</orcidid><orcidid>https://orcid.org/0000-0001-6184-7107</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1076-2787 |
ispartof | Complexity (New York, N.Y.), 2021, Vol.2021 (1) |
issn | 1076-2787 1099-0526 |
language | eng |
recordid | cdi_proquest_journals_2487052708 |
source | Wiley Online Library; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
subjects | Algorithms Big Data Breast cancer Classifiers Correlation Datasets Decision making Decision trees Diagnostic systems Disease Feature selection Internet of Things Machine learning Model accuracy Mutation Patients Real time Social networks Support vector machines Tumors Womens health |
title | Breast Cancer Identification from Patients’ Tweet Streaming Using Machine Learning Solution on Spark |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T21%3A13%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Breast%20Cancer%20Identification%20from%20Patients%E2%80%99%20Tweet%20Streaming%20Using%20Machine%20Learning%20Solution%20on%20Spark&rft.jtitle=Complexity%20(New%20York,%20N.Y.)&rft.au=Omran,%20Nahla%20F.&rft.date=2021&rft.volume=2021&rft.issue=1&rft.issn=1076-2787&rft.eissn=1099-0526&rft_id=info:doi/10.1155/2021/6653508&rft_dat=%3Cproquest_doaj_%3E2487052708%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2487052708&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_baf5acba125248ec8cd18c9c8ae89e09&rfr_iscdi=true |