Effects of thermal cycling and microstructure on the fatigue crack propagation in forged titanium–aluminide alloys under thermomechanical fatigue conditions

The mechanical properties and fatigue strength of titanium–aluminide (TiAl) alloys are sensitive to the environmental conditions, such as temperature, and their microstructures can be controlled by thermomechanical processing. In this study, two samples of a forged TiAl alloy were manufactured throu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2020-10, Vol.797, p.140248, Article 140248
Hauptverfasser: Yamazaki, Yasuhiro, Sugaya, Ryota, Kobayashi, Ukyo, Ohta, Yutaro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 140248
container_title Materials science & engineering. A, Structural materials : properties, microstructure and processing
container_volume 797
creator Yamazaki, Yasuhiro
Sugaya, Ryota
Kobayashi, Ukyo
Ohta, Yutaro
description The mechanical properties and fatigue strength of titanium–aluminide (TiAl) alloys are sensitive to the environmental conditions, such as temperature, and their microstructures can be controlled by thermomechanical processing. In this study, two samples of a forged TiAl alloy were manufactured through high-temperature forging followed by different heat treatments to obtain a near-lamellar microstructure and a triplex microstructure, which contains lamellar and equiaxed γ and β grains. The fatigue crack propagation tests were conducted under isothermal low-cycle fatigue (LCF) and the out-of-phase type thermomechanical fatigue (OP-TMF) conditions. The experimental results indicated that the microstructure strongly affects the crack propagation behavior because the near-lamellar microstructure had a higher resistance to fatigue crack propagation compared to the triplex microstructure. This also revealed that the fatigue crack was remarkably accelerated by the OP-TMF conditions compared to the LCF conditions. The oxygen diffusion into the β phase occurred at the crack tip and lead to the transformation of the β phase into the brittle α phase. The results of the scanning electron microscope (SEM), energy dispersive X-ray (EDX), and electron backscatter diffraction (EBSD) analyses indicated that this transformation induced the acceleration of crack propagation under the OP-TMF loading conditions.
doi_str_mv 10.1016/j.msea.2020.140248
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2486865256</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921509320313137</els_id><sourcerecordid>2486865256</sourcerecordid><originalsourceid>FETCH-LOGICAL-c394t-8049194f6fbc59b10c269f75d89a7d36882ef22b3f2147779dde7fbafaa037a33</originalsourceid><addsrcrecordid>eNp9UctqGzEUFaWBuk5_ICtB1uPqMS9BN8U4SSGQTbIWsnTlyJ2RHElT8C7_0H0-rl9SDRO67OrCvechnYPQFSUbSmj79bgZE6gNI6wsasLq_gNa0b7jVS14-xGtiGC0aojgn9DnlI6EkAJrVuhtZy3onHCwOD9DHNWA9VkPzh-w8gaPTseQcpx0niLg4GcUtiq7wwRYR6V_4lMMJ3Uoq3J1HtsQD2Bwdll5N41_Xn-rYRqddwawGoZwTnjyBuLiF0bQzwWoi_E_2eCNm-XSJbqwakjw5X2u0dPN7nF7V90_3P7Yfr-vNBd1rnpSCypq29q9bsSeEs1aYbvG9EJ1hrd9z8AytueW0brrOmEMdHavrFKEd4rzNbpedMtfXiZIWR7DFH2xlCXLtm8b1rQFxRbUnEmKYOUpulHFs6REzj3Io5x7kHMPcumhkL4tJCjv_-UgyqQdeA3GxZK8NMH9j_4X6WmWmQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2486865256</pqid></control><display><type>article</type><title>Effects of thermal cycling and microstructure on the fatigue crack propagation in forged titanium–aluminide alloys under thermomechanical fatigue conditions</title><source>Elsevier ScienceDirect Journals</source><creator>Yamazaki, Yasuhiro ; Sugaya, Ryota ; Kobayashi, Ukyo ; Ohta, Yutaro</creator><creatorcontrib>Yamazaki, Yasuhiro ; Sugaya, Ryota ; Kobayashi, Ukyo ; Ohta, Yutaro</creatorcontrib><description>The mechanical properties and fatigue strength of titanium–aluminide (TiAl) alloys are sensitive to the environmental conditions, such as temperature, and their microstructures can be controlled by thermomechanical processing. In this study, two samples of a forged TiAl alloy were manufactured through high-temperature forging followed by different heat treatments to obtain a near-lamellar microstructure and a triplex microstructure, which contains lamellar and equiaxed γ and β grains. The fatigue crack propagation tests were conducted under isothermal low-cycle fatigue (LCF) and the out-of-phase type thermomechanical fatigue (OP-TMF) conditions. The experimental results indicated that the microstructure strongly affects the crack propagation behavior because the near-lamellar microstructure had a higher resistance to fatigue crack propagation compared to the triplex microstructure. This also revealed that the fatigue crack was remarkably accelerated by the OP-TMF conditions compared to the LCF conditions. The oxygen diffusion into the β phase occurred at the crack tip and lead to the transformation of the β phase into the brittle α phase. The results of the scanning electron microscope (SEM), energy dispersive X-ray (EDX), and electron backscatter diffraction (EBSD) analyses indicated that this transformation induced the acceleration of crack propagation under the OP-TMF loading conditions.</description><identifier>ISSN: 0921-5093</identifier><identifier>EISSN: 1873-4936</identifier><identifier>DOI: 10.1016/j.msea.2020.140248</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Beta phase ; Crack propagation ; Crack tips ; Electron backscatter diffraction ; Fatigue crack propagation ; Fatigue failure ; Fatigue strength ; Fatigue tests ; Forging ; Heat treatment ; High temperature ; Intermetallic compounds ; Lamellar structure ; Low cycle fatigue ; Mechanical properties ; Metal fatigue ; Microstructure ; Propagation ; Thermal cycling ; Thermomechanical fatigue ; Thermomechanical treatment ; Titanium aluminides ; Titanium base alloys ; β phase embrittlement ; β-containing TiAl alloy</subject><ispartof>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing, 2020-10, Vol.797, p.140248, Article 140248</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier BV Oct 21, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c394t-8049194f6fbc59b10c269f75d89a7d36882ef22b3f2147779dde7fbafaa037a33</citedby><cites>FETCH-LOGICAL-c394t-8049194f6fbc59b10c269f75d89a7d36882ef22b3f2147779dde7fbafaa037a33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.msea.2020.140248$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27907,27908,45978</link.rule.ids></links><search><creatorcontrib>Yamazaki, Yasuhiro</creatorcontrib><creatorcontrib>Sugaya, Ryota</creatorcontrib><creatorcontrib>Kobayashi, Ukyo</creatorcontrib><creatorcontrib>Ohta, Yutaro</creatorcontrib><title>Effects of thermal cycling and microstructure on the fatigue crack propagation in forged titanium–aluminide alloys under thermomechanical fatigue conditions</title><title>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</title><description>The mechanical properties and fatigue strength of titanium–aluminide (TiAl) alloys are sensitive to the environmental conditions, such as temperature, and their microstructures can be controlled by thermomechanical processing. In this study, two samples of a forged TiAl alloy were manufactured through high-temperature forging followed by different heat treatments to obtain a near-lamellar microstructure and a triplex microstructure, which contains lamellar and equiaxed γ and β grains. The fatigue crack propagation tests were conducted under isothermal low-cycle fatigue (LCF) and the out-of-phase type thermomechanical fatigue (OP-TMF) conditions. The experimental results indicated that the microstructure strongly affects the crack propagation behavior because the near-lamellar microstructure had a higher resistance to fatigue crack propagation compared to the triplex microstructure. This also revealed that the fatigue crack was remarkably accelerated by the OP-TMF conditions compared to the LCF conditions. The oxygen diffusion into the β phase occurred at the crack tip and lead to the transformation of the β phase into the brittle α phase. The results of the scanning electron microscope (SEM), energy dispersive X-ray (EDX), and electron backscatter diffraction (EBSD) analyses indicated that this transformation induced the acceleration of crack propagation under the OP-TMF loading conditions.</description><subject>Beta phase</subject><subject>Crack propagation</subject><subject>Crack tips</subject><subject>Electron backscatter diffraction</subject><subject>Fatigue crack propagation</subject><subject>Fatigue failure</subject><subject>Fatigue strength</subject><subject>Fatigue tests</subject><subject>Forging</subject><subject>Heat treatment</subject><subject>High temperature</subject><subject>Intermetallic compounds</subject><subject>Lamellar structure</subject><subject>Low cycle fatigue</subject><subject>Mechanical properties</subject><subject>Metal fatigue</subject><subject>Microstructure</subject><subject>Propagation</subject><subject>Thermal cycling</subject><subject>Thermomechanical fatigue</subject><subject>Thermomechanical treatment</subject><subject>Titanium aluminides</subject><subject>Titanium base alloys</subject><subject>β phase embrittlement</subject><subject>β-containing TiAl alloy</subject><issn>0921-5093</issn><issn>1873-4936</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9UctqGzEUFaWBuk5_ICtB1uPqMS9BN8U4SSGQTbIWsnTlyJ2RHElT8C7_0H0-rl9SDRO67OrCvechnYPQFSUbSmj79bgZE6gNI6wsasLq_gNa0b7jVS14-xGtiGC0aojgn9DnlI6EkAJrVuhtZy3onHCwOD9DHNWA9VkPzh-w8gaPTseQcpx0niLg4GcUtiq7wwRYR6V_4lMMJ3Uoq3J1HtsQD2Bwdll5N41_Xn-rYRqddwawGoZwTnjyBuLiF0bQzwWoi_E_2eCNm-XSJbqwakjw5X2u0dPN7nF7V90_3P7Yfr-vNBd1rnpSCypq29q9bsSeEs1aYbvG9EJ1hrd9z8AytueW0brrOmEMdHavrFKEd4rzNbpedMtfXiZIWR7DFH2xlCXLtm8b1rQFxRbUnEmKYOUpulHFs6REzj3Io5x7kHMPcumhkL4tJCjv_-UgyqQdeA3GxZK8NMH9j_4X6WmWmQ</recordid><startdate>20201021</startdate><enddate>20201021</enddate><creator>Yamazaki, Yasuhiro</creator><creator>Sugaya, Ryota</creator><creator>Kobayashi, Ukyo</creator><creator>Ohta, Yutaro</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20201021</creationdate><title>Effects of thermal cycling and microstructure on the fatigue crack propagation in forged titanium–aluminide alloys under thermomechanical fatigue conditions</title><author>Yamazaki, Yasuhiro ; Sugaya, Ryota ; Kobayashi, Ukyo ; Ohta, Yutaro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c394t-8049194f6fbc59b10c269f75d89a7d36882ef22b3f2147779dde7fbafaa037a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Beta phase</topic><topic>Crack propagation</topic><topic>Crack tips</topic><topic>Electron backscatter diffraction</topic><topic>Fatigue crack propagation</topic><topic>Fatigue failure</topic><topic>Fatigue strength</topic><topic>Fatigue tests</topic><topic>Forging</topic><topic>Heat treatment</topic><topic>High temperature</topic><topic>Intermetallic compounds</topic><topic>Lamellar structure</topic><topic>Low cycle fatigue</topic><topic>Mechanical properties</topic><topic>Metal fatigue</topic><topic>Microstructure</topic><topic>Propagation</topic><topic>Thermal cycling</topic><topic>Thermomechanical fatigue</topic><topic>Thermomechanical treatment</topic><topic>Titanium aluminides</topic><topic>Titanium base alloys</topic><topic>β phase embrittlement</topic><topic>β-containing TiAl alloy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yamazaki, Yasuhiro</creatorcontrib><creatorcontrib>Sugaya, Ryota</creatorcontrib><creatorcontrib>Kobayashi, Ukyo</creatorcontrib><creatorcontrib>Ohta, Yutaro</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yamazaki, Yasuhiro</au><au>Sugaya, Ryota</au><au>Kobayashi, Ukyo</au><au>Ohta, Yutaro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of thermal cycling and microstructure on the fatigue crack propagation in forged titanium–aluminide alloys under thermomechanical fatigue conditions</atitle><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle><date>2020-10-21</date><risdate>2020</risdate><volume>797</volume><spage>140248</spage><pages>140248-</pages><artnum>140248</artnum><issn>0921-5093</issn><eissn>1873-4936</eissn><abstract>The mechanical properties and fatigue strength of titanium–aluminide (TiAl) alloys are sensitive to the environmental conditions, such as temperature, and their microstructures can be controlled by thermomechanical processing. In this study, two samples of a forged TiAl alloy were manufactured through high-temperature forging followed by different heat treatments to obtain a near-lamellar microstructure and a triplex microstructure, which contains lamellar and equiaxed γ and β grains. The fatigue crack propagation tests were conducted under isothermal low-cycle fatigue (LCF) and the out-of-phase type thermomechanical fatigue (OP-TMF) conditions. The experimental results indicated that the microstructure strongly affects the crack propagation behavior because the near-lamellar microstructure had a higher resistance to fatigue crack propagation compared to the triplex microstructure. This also revealed that the fatigue crack was remarkably accelerated by the OP-TMF conditions compared to the LCF conditions. The oxygen diffusion into the β phase occurred at the crack tip and lead to the transformation of the β phase into the brittle α phase. The results of the scanning electron microscope (SEM), energy dispersive X-ray (EDX), and electron backscatter diffraction (EBSD) analyses indicated that this transformation induced the acceleration of crack propagation under the OP-TMF loading conditions.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.msea.2020.140248</doi></addata></record>
fulltext fulltext
identifier ISSN: 0921-5093
ispartof Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2020-10, Vol.797, p.140248, Article 140248
issn 0921-5093
1873-4936
language eng
recordid cdi_proquest_journals_2486865256
source Elsevier ScienceDirect Journals
subjects Beta phase
Crack propagation
Crack tips
Electron backscatter diffraction
Fatigue crack propagation
Fatigue failure
Fatigue strength
Fatigue tests
Forging
Heat treatment
High temperature
Intermetallic compounds
Lamellar structure
Low cycle fatigue
Mechanical properties
Metal fatigue
Microstructure
Propagation
Thermal cycling
Thermomechanical fatigue
Thermomechanical treatment
Titanium aluminides
Titanium base alloys
β phase embrittlement
β-containing TiAl alloy
title Effects of thermal cycling and microstructure on the fatigue crack propagation in forged titanium–aluminide alloys under thermomechanical fatigue conditions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T23%3A50%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20thermal%20cycling%20and%20microstructure%20on%20the%20fatigue%20crack%20propagation%20in%20forged%20titanium%E2%80%93aluminide%20alloys%20under%20thermomechanical%20fatigue%20conditions&rft.jtitle=Materials%20science%20&%20engineering.%20A,%20Structural%20materials%20:%20properties,%20microstructure%20and%20processing&rft.au=Yamazaki,%20Yasuhiro&rft.date=2020-10-21&rft.volume=797&rft.spage=140248&rft.pages=140248-&rft.artnum=140248&rft.issn=0921-5093&rft.eissn=1873-4936&rft_id=info:doi/10.1016/j.msea.2020.140248&rft_dat=%3Cproquest_cross%3E2486865256%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2486865256&rft_id=info:pmid/&rft_els_id=S0921509320313137&rfr_iscdi=true