Effects of thermal cycling and microstructure on the fatigue crack propagation in forged titanium–aluminide alloys under thermomechanical fatigue conditions
The mechanical properties and fatigue strength of titanium–aluminide (TiAl) alloys are sensitive to the environmental conditions, such as temperature, and their microstructures can be controlled by thermomechanical processing. In this study, two samples of a forged TiAl alloy were manufactured throu...
Gespeichert in:
Veröffentlicht in: | Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2020-10, Vol.797, p.140248, Article 140248 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 140248 |
container_title | Materials science & engineering. A, Structural materials : properties, microstructure and processing |
container_volume | 797 |
creator | Yamazaki, Yasuhiro Sugaya, Ryota Kobayashi, Ukyo Ohta, Yutaro |
description | The mechanical properties and fatigue strength of titanium–aluminide (TiAl) alloys are sensitive to the environmental conditions, such as temperature, and their microstructures can be controlled by thermomechanical processing. In this study, two samples of a forged TiAl alloy were manufactured through high-temperature forging followed by different heat treatments to obtain a near-lamellar microstructure and a triplex microstructure, which contains lamellar and equiaxed γ and β grains. The fatigue crack propagation tests were conducted under isothermal low-cycle fatigue (LCF) and the out-of-phase type thermomechanical fatigue (OP-TMF) conditions. The experimental results indicated that the microstructure strongly affects the crack propagation behavior because the near-lamellar microstructure had a higher resistance to fatigue crack propagation compared to the triplex microstructure. This also revealed that the fatigue crack was remarkably accelerated by the OP-TMF conditions compared to the LCF conditions. The oxygen diffusion into the β phase occurred at the crack tip and lead to the transformation of the β phase into the brittle α phase. The results of the scanning electron microscope (SEM), energy dispersive X-ray (EDX), and electron backscatter diffraction (EBSD) analyses indicated that this transformation induced the acceleration of crack propagation under the OP-TMF loading conditions. |
doi_str_mv | 10.1016/j.msea.2020.140248 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2486865256</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921509320313137</els_id><sourcerecordid>2486865256</sourcerecordid><originalsourceid>FETCH-LOGICAL-c394t-8049194f6fbc59b10c269f75d89a7d36882ef22b3f2147779dde7fbafaa037a33</originalsourceid><addsrcrecordid>eNp9UctqGzEUFaWBuk5_ICtB1uPqMS9BN8U4SSGQTbIWsnTlyJ2RHElT8C7_0H0-rl9SDRO67OrCvechnYPQFSUbSmj79bgZE6gNI6wsasLq_gNa0b7jVS14-xGtiGC0aojgn9DnlI6EkAJrVuhtZy3onHCwOD9DHNWA9VkPzh-w8gaPTseQcpx0niLg4GcUtiq7wwRYR6V_4lMMJ3Uoq3J1HtsQD2Bwdll5N41_Xn-rYRqddwawGoZwTnjyBuLiF0bQzwWoi_E_2eCNm-XSJbqwakjw5X2u0dPN7nF7V90_3P7Yfr-vNBd1rnpSCypq29q9bsSeEs1aYbvG9EJ1hrd9z8AytueW0brrOmEMdHavrFKEd4rzNbpedMtfXiZIWR7DFH2xlCXLtm8b1rQFxRbUnEmKYOUpulHFs6REzj3Io5x7kHMPcumhkL4tJCjv_-UgyqQdeA3GxZK8NMH9j_4X6WmWmQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2486865256</pqid></control><display><type>article</type><title>Effects of thermal cycling and microstructure on the fatigue crack propagation in forged titanium–aluminide alloys under thermomechanical fatigue conditions</title><source>Elsevier ScienceDirect Journals</source><creator>Yamazaki, Yasuhiro ; Sugaya, Ryota ; Kobayashi, Ukyo ; Ohta, Yutaro</creator><creatorcontrib>Yamazaki, Yasuhiro ; Sugaya, Ryota ; Kobayashi, Ukyo ; Ohta, Yutaro</creatorcontrib><description>The mechanical properties and fatigue strength of titanium–aluminide (TiAl) alloys are sensitive to the environmental conditions, such as temperature, and their microstructures can be controlled by thermomechanical processing. In this study, two samples of a forged TiAl alloy were manufactured through high-temperature forging followed by different heat treatments to obtain a near-lamellar microstructure and a triplex microstructure, which contains lamellar and equiaxed γ and β grains. The fatigue crack propagation tests were conducted under isothermal low-cycle fatigue (LCF) and the out-of-phase type thermomechanical fatigue (OP-TMF) conditions. The experimental results indicated that the microstructure strongly affects the crack propagation behavior because the near-lamellar microstructure had a higher resistance to fatigue crack propagation compared to the triplex microstructure. This also revealed that the fatigue crack was remarkably accelerated by the OP-TMF conditions compared to the LCF conditions. The oxygen diffusion into the β phase occurred at the crack tip and lead to the transformation of the β phase into the brittle α phase. The results of the scanning electron microscope (SEM), energy dispersive X-ray (EDX), and electron backscatter diffraction (EBSD) analyses indicated that this transformation induced the acceleration of crack propagation under the OP-TMF loading conditions.</description><identifier>ISSN: 0921-5093</identifier><identifier>EISSN: 1873-4936</identifier><identifier>DOI: 10.1016/j.msea.2020.140248</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Beta phase ; Crack propagation ; Crack tips ; Electron backscatter diffraction ; Fatigue crack propagation ; Fatigue failure ; Fatigue strength ; Fatigue tests ; Forging ; Heat treatment ; High temperature ; Intermetallic compounds ; Lamellar structure ; Low cycle fatigue ; Mechanical properties ; Metal fatigue ; Microstructure ; Propagation ; Thermal cycling ; Thermomechanical fatigue ; Thermomechanical treatment ; Titanium aluminides ; Titanium base alloys ; β phase embrittlement ; β-containing TiAl alloy</subject><ispartof>Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2020-10, Vol.797, p.140248, Article 140248</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier BV Oct 21, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c394t-8049194f6fbc59b10c269f75d89a7d36882ef22b3f2147779dde7fbafaa037a33</citedby><cites>FETCH-LOGICAL-c394t-8049194f6fbc59b10c269f75d89a7d36882ef22b3f2147779dde7fbafaa037a33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.msea.2020.140248$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27907,27908,45978</link.rule.ids></links><search><creatorcontrib>Yamazaki, Yasuhiro</creatorcontrib><creatorcontrib>Sugaya, Ryota</creatorcontrib><creatorcontrib>Kobayashi, Ukyo</creatorcontrib><creatorcontrib>Ohta, Yutaro</creatorcontrib><title>Effects of thermal cycling and microstructure on the fatigue crack propagation in forged titanium–aluminide alloys under thermomechanical fatigue conditions</title><title>Materials science & engineering. A, Structural materials : properties, microstructure and processing</title><description>The mechanical properties and fatigue strength of titanium–aluminide (TiAl) alloys are sensitive to the environmental conditions, such as temperature, and their microstructures can be controlled by thermomechanical processing. In this study, two samples of a forged TiAl alloy were manufactured through high-temperature forging followed by different heat treatments to obtain a near-lamellar microstructure and a triplex microstructure, which contains lamellar and equiaxed γ and β grains. The fatigue crack propagation tests were conducted under isothermal low-cycle fatigue (LCF) and the out-of-phase type thermomechanical fatigue (OP-TMF) conditions. The experimental results indicated that the microstructure strongly affects the crack propagation behavior because the near-lamellar microstructure had a higher resistance to fatigue crack propagation compared to the triplex microstructure. This also revealed that the fatigue crack was remarkably accelerated by the OP-TMF conditions compared to the LCF conditions. The oxygen diffusion into the β phase occurred at the crack tip and lead to the transformation of the β phase into the brittle α phase. The results of the scanning electron microscope (SEM), energy dispersive X-ray (EDX), and electron backscatter diffraction (EBSD) analyses indicated that this transformation induced the acceleration of crack propagation under the OP-TMF loading conditions.</description><subject>Beta phase</subject><subject>Crack propagation</subject><subject>Crack tips</subject><subject>Electron backscatter diffraction</subject><subject>Fatigue crack propagation</subject><subject>Fatigue failure</subject><subject>Fatigue strength</subject><subject>Fatigue tests</subject><subject>Forging</subject><subject>Heat treatment</subject><subject>High temperature</subject><subject>Intermetallic compounds</subject><subject>Lamellar structure</subject><subject>Low cycle fatigue</subject><subject>Mechanical properties</subject><subject>Metal fatigue</subject><subject>Microstructure</subject><subject>Propagation</subject><subject>Thermal cycling</subject><subject>Thermomechanical fatigue</subject><subject>Thermomechanical treatment</subject><subject>Titanium aluminides</subject><subject>Titanium base alloys</subject><subject>β phase embrittlement</subject><subject>β-containing TiAl alloy</subject><issn>0921-5093</issn><issn>1873-4936</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9UctqGzEUFaWBuk5_ICtB1uPqMS9BN8U4SSGQTbIWsnTlyJ2RHElT8C7_0H0-rl9SDRO67OrCvechnYPQFSUbSmj79bgZE6gNI6wsasLq_gNa0b7jVS14-xGtiGC0aojgn9DnlI6EkAJrVuhtZy3onHCwOD9DHNWA9VkPzh-w8gaPTseQcpx0niLg4GcUtiq7wwRYR6V_4lMMJ3Uoq3J1HtsQD2Bwdll5N41_Xn-rYRqddwawGoZwTnjyBuLiF0bQzwWoi_E_2eCNm-XSJbqwakjw5X2u0dPN7nF7V90_3P7Yfr-vNBd1rnpSCypq29q9bsSeEs1aYbvG9EJ1hrd9z8AytueW0brrOmEMdHavrFKEd4rzNbpedMtfXiZIWR7DFH2xlCXLtm8b1rQFxRbUnEmKYOUpulHFs6REzj3Io5x7kHMPcumhkL4tJCjv_-UgyqQdeA3GxZK8NMH9j_4X6WmWmQ</recordid><startdate>20201021</startdate><enddate>20201021</enddate><creator>Yamazaki, Yasuhiro</creator><creator>Sugaya, Ryota</creator><creator>Kobayashi, Ukyo</creator><creator>Ohta, Yutaro</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20201021</creationdate><title>Effects of thermal cycling and microstructure on the fatigue crack propagation in forged titanium–aluminide alloys under thermomechanical fatigue conditions</title><author>Yamazaki, Yasuhiro ; Sugaya, Ryota ; Kobayashi, Ukyo ; Ohta, Yutaro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c394t-8049194f6fbc59b10c269f75d89a7d36882ef22b3f2147779dde7fbafaa037a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Beta phase</topic><topic>Crack propagation</topic><topic>Crack tips</topic><topic>Electron backscatter diffraction</topic><topic>Fatigue crack propagation</topic><topic>Fatigue failure</topic><topic>Fatigue strength</topic><topic>Fatigue tests</topic><topic>Forging</topic><topic>Heat treatment</topic><topic>High temperature</topic><topic>Intermetallic compounds</topic><topic>Lamellar structure</topic><topic>Low cycle fatigue</topic><topic>Mechanical properties</topic><topic>Metal fatigue</topic><topic>Microstructure</topic><topic>Propagation</topic><topic>Thermal cycling</topic><topic>Thermomechanical fatigue</topic><topic>Thermomechanical treatment</topic><topic>Titanium aluminides</topic><topic>Titanium base alloys</topic><topic>β phase embrittlement</topic><topic>β-containing TiAl alloy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yamazaki, Yasuhiro</creatorcontrib><creatorcontrib>Sugaya, Ryota</creatorcontrib><creatorcontrib>Kobayashi, Ukyo</creatorcontrib><creatorcontrib>Ohta, Yutaro</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Materials science & engineering. A, Structural materials : properties, microstructure and processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yamazaki, Yasuhiro</au><au>Sugaya, Ryota</au><au>Kobayashi, Ukyo</au><au>Ohta, Yutaro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of thermal cycling and microstructure on the fatigue crack propagation in forged titanium–aluminide alloys under thermomechanical fatigue conditions</atitle><jtitle>Materials science & engineering. A, Structural materials : properties, microstructure and processing</jtitle><date>2020-10-21</date><risdate>2020</risdate><volume>797</volume><spage>140248</spage><pages>140248-</pages><artnum>140248</artnum><issn>0921-5093</issn><eissn>1873-4936</eissn><abstract>The mechanical properties and fatigue strength of titanium–aluminide (TiAl) alloys are sensitive to the environmental conditions, such as temperature, and their microstructures can be controlled by thermomechanical processing. In this study, two samples of a forged TiAl alloy were manufactured through high-temperature forging followed by different heat treatments to obtain a near-lamellar microstructure and a triplex microstructure, which contains lamellar and equiaxed γ and β grains. The fatigue crack propagation tests were conducted under isothermal low-cycle fatigue (LCF) and the out-of-phase type thermomechanical fatigue (OP-TMF) conditions. The experimental results indicated that the microstructure strongly affects the crack propagation behavior because the near-lamellar microstructure had a higher resistance to fatigue crack propagation compared to the triplex microstructure. This also revealed that the fatigue crack was remarkably accelerated by the OP-TMF conditions compared to the LCF conditions. The oxygen diffusion into the β phase occurred at the crack tip and lead to the transformation of the β phase into the brittle α phase. The results of the scanning electron microscope (SEM), energy dispersive X-ray (EDX), and electron backscatter diffraction (EBSD) analyses indicated that this transformation induced the acceleration of crack propagation under the OP-TMF loading conditions.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.msea.2020.140248</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0921-5093 |
ispartof | Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2020-10, Vol.797, p.140248, Article 140248 |
issn | 0921-5093 1873-4936 |
language | eng |
recordid | cdi_proquest_journals_2486865256 |
source | Elsevier ScienceDirect Journals |
subjects | Beta phase Crack propagation Crack tips Electron backscatter diffraction Fatigue crack propagation Fatigue failure Fatigue strength Fatigue tests Forging Heat treatment High temperature Intermetallic compounds Lamellar structure Low cycle fatigue Mechanical properties Metal fatigue Microstructure Propagation Thermal cycling Thermomechanical fatigue Thermomechanical treatment Titanium aluminides Titanium base alloys β phase embrittlement β-containing TiAl alloy |
title | Effects of thermal cycling and microstructure on the fatigue crack propagation in forged titanium–aluminide alloys under thermomechanical fatigue conditions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T23%3A50%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20thermal%20cycling%20and%20microstructure%20on%20the%20fatigue%20crack%20propagation%20in%20forged%20titanium%E2%80%93aluminide%20alloys%20under%20thermomechanical%20fatigue%20conditions&rft.jtitle=Materials%20science%20&%20engineering.%20A,%20Structural%20materials%20:%20properties,%20microstructure%20and%20processing&rft.au=Yamazaki,%20Yasuhiro&rft.date=2020-10-21&rft.volume=797&rft.spage=140248&rft.pages=140248-&rft.artnum=140248&rft.issn=0921-5093&rft.eissn=1873-4936&rft_id=info:doi/10.1016/j.msea.2020.140248&rft_dat=%3Cproquest_cross%3E2486865256%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2486865256&rft_id=info:pmid/&rft_els_id=S0921509320313137&rfr_iscdi=true |