On the Static Bifurcation of a Moving Heated Panel Streamlined by an Ideal Fluid

The axial motion of a heated elastic panel streamlined by an ideal fluid is considered. It is supposed that the panel moving with a constant axial velocity and performing transverse elastic vibrations is simply supported at the span ends. The problem of static buckling (bifurcation) is formulated ba...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mechanics of solids 2020-09, Vol.55 (7), p.1071-1076
Hauptverfasser: Banichuk, N. V., Afanas’ev, V. S., Ivanova, S. Yu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1076
container_issue 7
container_start_page 1071
container_title Mechanics of solids
container_volume 55
creator Banichuk, N. V.
Afanas’ev, V. S.
Ivanova, S. Yu
description The axial motion of a heated elastic panel streamlined by an ideal fluid is considered. It is supposed that the panel moving with a constant axial velocity and performing transverse elastic vibrations is simply supported at the span ends. The problem of static buckling (bifurcation) is formulated based on the concept of elastic equilibrium of a curved panel under the action of inertial forces, hydrodynamic reaction, heat, and in-plane tensions (compressions) applied to the panel. The derived nonlinear boundary value problem is solved by the perturbation method. As a result, the influence of heating, hydroelastic interaction, and in-plane tension (compression) on the stability of elastic panel performing axial motion and transverse vibrations is investigated.
doi_str_mv 10.3103/S0025654420070055
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2486862133</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2486862133</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-6e57795819681964b7d40046d35155c49975abc48ae264d5425c287648eb0f943</originalsourceid><addsrcrecordid>eNp1kE9Lw0AQxRdRsFY_gLcFz9HZ_8lRi7WFSgvVc9hsNjUl3dTdROi3d0MED-JhmGHe772BQeiWwD0jwB62AFRIwTkFUABCnKEJyRhPVMbkOZoMcjLol-gqhD2ABErJBG3WDncfFm873dUGP9VV700cW4fbCmv82n7VbocXVne2xBvtbBNZb_WhqV3cFCesHV6WVjd43vR1eY0uKt0Ee_PTp-h9_vw2WySr9cty9rhKDCOyS6QVSmUiJZkciheq5ABclkwQIQzPMiV0YXiqLZW8FJwKQ1MleWoLqDLOpuhuzD369rO3ocv3be9dPJlTnspUUsJYpMhIGd-G4G2VH3190P6UE8iHx-V_Hhc9dPSEyLqd9b_J_5u-AZSYa68</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2486862133</pqid></control><display><type>article</type><title>On the Static Bifurcation of a Moving Heated Panel Streamlined by an Ideal Fluid</title><source>SpringerLink Journals - AutoHoldings</source><creator>Banichuk, N. V. ; Afanas’ev, V. S. ; Ivanova, S. Yu</creator><creatorcontrib>Banichuk, N. V. ; Afanas’ev, V. S. ; Ivanova, S. Yu</creatorcontrib><description>The axial motion of a heated elastic panel streamlined by an ideal fluid is considered. It is supposed that the panel moving with a constant axial velocity and performing transverse elastic vibrations is simply supported at the span ends. The problem of static buckling (bifurcation) is formulated based on the concept of elastic equilibrium of a curved panel under the action of inertial forces, hydrodynamic reaction, heat, and in-plane tensions (compressions) applied to the panel. The derived nonlinear boundary value problem is solved by the perturbation method. As a result, the influence of heating, hydroelastic interaction, and in-plane tension (compression) on the stability of elastic panel performing axial motion and transverse vibrations is investigated.</description><identifier>ISSN: 0025-6544</identifier><identifier>EISSN: 1934-7936</identifier><identifier>DOI: 10.3103/S0025654420070055</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Axial stress ; Bifurcations ; Boundary value problems ; Classical Mechanics ; Curved panels ; Ideal fluids ; Motion stability ; Perturbation methods ; Physics ; Physics and Astronomy ; Transverse oscillation</subject><ispartof>Mechanics of solids, 2020-09, Vol.55 (7), p.1071-1076</ispartof><rights>Allerton Press, Inc. 2020. ISSN 0025-6544, Mechanics of Solids, 2020, Vol. 55, No. 7, pp. 1071–1076. © Allerton Press, Inc., 2020. Russian Text © The Author(s), 2020, published in Prikladnaya Matematika i Mekhanika, 2020, Vol. 84, No. 2, pp. 234–241.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-6e57795819681964b7d40046d35155c49975abc48ae264d5425c287648eb0f943</citedby><cites>FETCH-LOGICAL-c316t-6e57795819681964b7d40046d35155c49975abc48ae264d5425c287648eb0f943</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.3103/S0025654420070055$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.3103/S0025654420070055$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Banichuk, N. V.</creatorcontrib><creatorcontrib>Afanas’ev, V. S.</creatorcontrib><creatorcontrib>Ivanova, S. Yu</creatorcontrib><title>On the Static Bifurcation of a Moving Heated Panel Streamlined by an Ideal Fluid</title><title>Mechanics of solids</title><addtitle>Mech. Solids</addtitle><description>The axial motion of a heated elastic panel streamlined by an ideal fluid is considered. It is supposed that the panel moving with a constant axial velocity and performing transverse elastic vibrations is simply supported at the span ends. The problem of static buckling (bifurcation) is formulated based on the concept of elastic equilibrium of a curved panel under the action of inertial forces, hydrodynamic reaction, heat, and in-plane tensions (compressions) applied to the panel. The derived nonlinear boundary value problem is solved by the perturbation method. As a result, the influence of heating, hydroelastic interaction, and in-plane tension (compression) on the stability of elastic panel performing axial motion and transverse vibrations is investigated.</description><subject>Axial stress</subject><subject>Bifurcations</subject><subject>Boundary value problems</subject><subject>Classical Mechanics</subject><subject>Curved panels</subject><subject>Ideal fluids</subject><subject>Motion stability</subject><subject>Perturbation methods</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Transverse oscillation</subject><issn>0025-6544</issn><issn>1934-7936</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kE9Lw0AQxRdRsFY_gLcFz9HZ_8lRi7WFSgvVc9hsNjUl3dTdROi3d0MED-JhmGHe772BQeiWwD0jwB62AFRIwTkFUABCnKEJyRhPVMbkOZoMcjLol-gqhD2ABErJBG3WDncfFm873dUGP9VV700cW4fbCmv82n7VbocXVne2xBvtbBNZb_WhqV3cFCesHV6WVjd43vR1eY0uKt0Ee_PTp-h9_vw2WySr9cty9rhKDCOyS6QVSmUiJZkciheq5ABclkwQIQzPMiV0YXiqLZW8FJwKQ1MleWoLqDLOpuhuzD369rO3ocv3be9dPJlTnspUUsJYpMhIGd-G4G2VH3190P6UE8iHx-V_Hhc9dPSEyLqd9b_J_5u-AZSYa68</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Banichuk, N. V.</creator><creator>Afanas’ev, V. S.</creator><creator>Ivanova, S. Yu</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200901</creationdate><title>On the Static Bifurcation of a Moving Heated Panel Streamlined by an Ideal Fluid</title><author>Banichuk, N. V. ; Afanas’ev, V. S. ; Ivanova, S. Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-6e57795819681964b7d40046d35155c49975abc48ae264d5425c287648eb0f943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Axial stress</topic><topic>Bifurcations</topic><topic>Boundary value problems</topic><topic>Classical Mechanics</topic><topic>Curved panels</topic><topic>Ideal fluids</topic><topic>Motion stability</topic><topic>Perturbation methods</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Transverse oscillation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Banichuk, N. V.</creatorcontrib><creatorcontrib>Afanas’ev, V. S.</creatorcontrib><creatorcontrib>Ivanova, S. Yu</creatorcontrib><collection>CrossRef</collection><jtitle>Mechanics of solids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Banichuk, N. V.</au><au>Afanas’ev, V. S.</au><au>Ivanova, S. Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Static Bifurcation of a Moving Heated Panel Streamlined by an Ideal Fluid</atitle><jtitle>Mechanics of solids</jtitle><stitle>Mech. Solids</stitle><date>2020-09-01</date><risdate>2020</risdate><volume>55</volume><issue>7</issue><spage>1071</spage><epage>1076</epage><pages>1071-1076</pages><issn>0025-6544</issn><eissn>1934-7936</eissn><abstract>The axial motion of a heated elastic panel streamlined by an ideal fluid is considered. It is supposed that the panel moving with a constant axial velocity and performing transverse elastic vibrations is simply supported at the span ends. The problem of static buckling (bifurcation) is formulated based on the concept of elastic equilibrium of a curved panel under the action of inertial forces, hydrodynamic reaction, heat, and in-plane tensions (compressions) applied to the panel. The derived nonlinear boundary value problem is solved by the perturbation method. As a result, the influence of heating, hydroelastic interaction, and in-plane tension (compression) on the stability of elastic panel performing axial motion and transverse vibrations is investigated.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.3103/S0025654420070055</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0025-6544
ispartof Mechanics of solids, 2020-09, Vol.55 (7), p.1071-1076
issn 0025-6544
1934-7936
language eng
recordid cdi_proquest_journals_2486862133
source SpringerLink Journals - AutoHoldings
subjects Axial stress
Bifurcations
Boundary value problems
Classical Mechanics
Curved panels
Ideal fluids
Motion stability
Perturbation methods
Physics
Physics and Astronomy
Transverse oscillation
title On the Static Bifurcation of a Moving Heated Panel Streamlined by an Ideal Fluid
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T12%3A42%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Static%20Bifurcation%20of%20a%20Moving%20Heated%20Panel%20Streamlined%20by%20an%20Ideal%20Fluid&rft.jtitle=Mechanics%20of%20solids&rft.au=Banichuk,%20N.%20V.&rft.date=2020-09-01&rft.volume=55&rft.issue=7&rft.spage=1071&rft.epage=1076&rft.pages=1071-1076&rft.issn=0025-6544&rft.eissn=1934-7936&rft_id=info:doi/10.3103/S0025654420070055&rft_dat=%3Cproquest_cross%3E2486862133%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2486862133&rft_id=info:pmid/&rfr_iscdi=true