Heat transfer of a radial, nanofluid water-graphene oxide hydromagnetic flow between coaxial pipes with a variable radius ratio
The main objective of the present study is to analyze the heat transfer of a water-graphene oxide nanofluid flow between coaxial pipes, analytically. The radius ratio of pipes is variable, and a radial constant magnetic field applies to the pipes. Moreover, the Robin boundary condition is considered...
Gespeichert in:
Veröffentlicht in: | Proceedings of the Institution of Mechanical Engineers. Part E, Journal of process mechanical engineering Journal of process mechanical engineering, 2021-02, Vol.235 (1), p.124-133 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 133 |
---|---|
container_issue | 1 |
container_start_page | 124 |
container_title | Proceedings of the Institution of Mechanical Engineers. Part E, Journal of process mechanical engineering |
container_volume | 235 |
creator | Javanmard, Mohsen Salmani, Hossein Taheri, Mohammad Hasan Askari, Nematollah Kazemi, Mohammad Ali |
description | The main objective of the present study is to analyze the heat transfer of a water-graphene oxide nanofluid flow between coaxial pipes, analytically. The radius ratio of pipes is variable, and a radial constant magnetic field applies to the pipes. Moreover, the Robin boundary condition is considered on the pipe’s walls. As a novelty, the exact solution is utilized to obtain the velocity distribution; further, the energy equation is solved employing the semi-analytical collocation method. The results reveal that the enhancement of nanoparticle volume fraction and radius ratio increases the dimensionless shear stress on pipes walls by 2% and 100%, respectively; consequently, the friction on walls grows. Though, the magnetic parameter has the contrary effect. Furthermore, it is observed the Eckert number augmentation decuples the bulk temperature and the heat transfer. Moreover, when the outer pipe Biot number and radius ratio increase, the bulk temperature and the heat transfer augment more than 90%. However, the magnetic parameter and nanoparticle volume fraction have a contrary effect. Also, as the inner pipe Biot number rises, we do not observe a constant pattern for the dimensionless temperature and heat transfer rate variation. |
doi_str_mv | 10.1177/0954408920948194 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2486707504</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0954408920948194</sage_id><sourcerecordid>2486707504</sourcerecordid><originalsourceid>FETCH-LOGICAL-c309t-72e52becd32a97c7107c5e72804ba731e1ef92b8d702e3784783e0083dd0ced03</originalsourceid><addsrcrecordid>eNp1kEFLw0AQhRdRsFbvHhe8Gp3dbN3kKEWtUPCi5zDJTtotaTbubk178q-bWkEQnMs7vPe-gcfYpYAbIbS-hXyiFGS5hFxlIldHbCRBiSQFyI_ZaG8ne_-UnYWwguEU6BH7nBFGHj22oSbPXc2RezQWm2veYuvqZmMN7zGSTxYeuyW1xN3WGuLLnfFujYuWoq143bielxR7opZXDrcDgne2o8B7G5cD9gO9xbKhb_4mDBKtO2cnNTaBLn50zN4eH16ns2T-8vQ8vZ8nVQp5TLSkiSypMqnEXFdagK4mpGUGqkSdChJU57LMjAZJqc6UzlICyFJjoCID6ZhdHbidd-8bCrFYuY1vh5eFVNmdBj0BNaTgkKq8C8FTXXTertHvCgHFfubi78xDJTlUAi7oF_pv_gtD5H3n</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2486707504</pqid></control><display><type>article</type><title>Heat transfer of a radial, nanofluid water-graphene oxide hydromagnetic flow between coaxial pipes with a variable radius ratio</title><source>SAGE Complete A-Z List</source><creator>Javanmard, Mohsen ; Salmani, Hossein ; Taheri, Mohammad Hasan ; Askari, Nematollah ; Kazemi, Mohammad Ali</creator><creatorcontrib>Javanmard, Mohsen ; Salmani, Hossein ; Taheri, Mohammad Hasan ; Askari, Nematollah ; Kazemi, Mohammad Ali</creatorcontrib><description>The main objective of the present study is to analyze the heat transfer of a water-graphene oxide nanofluid flow between coaxial pipes, analytically. The radius ratio of pipes is variable, and a radial constant magnetic field applies to the pipes. Moreover, the Robin boundary condition is considered on the pipe’s walls. As a novelty, the exact solution is utilized to obtain the velocity distribution; further, the energy equation is solved employing the semi-analytical collocation method. The results reveal that the enhancement of nanoparticle volume fraction and radius ratio increases the dimensionless shear stress on pipes walls by 2% and 100%, respectively; consequently, the friction on walls grows. Though, the magnetic parameter has the contrary effect. Furthermore, it is observed the Eckert number augmentation decuples the bulk temperature and the heat transfer. Moreover, when the outer pipe Biot number and radius ratio increase, the bulk temperature and the heat transfer augment more than 90%. However, the magnetic parameter and nanoparticle volume fraction have a contrary effect. Also, as the inner pipe Biot number rises, we do not observe a constant pattern for the dimensionless temperature and heat transfer rate variation.</description><identifier>ISSN: 0954-4089</identifier><identifier>EISSN: 2041-3009</identifier><identifier>DOI: 10.1177/0954408920948194</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Biot number ; Boundary conditions ; Collocation methods ; Energy distribution ; Exact solutions ; Fluid dynamics ; Fluid flow ; Graphene ; Heat transfer ; Magnetic properties ; Mathematical analysis ; Nanofluids ; Nanoparticles ; Parameters ; Pipes ; Shear stress ; Velocity distribution ; Walls</subject><ispartof>Proceedings of the Institution of Mechanical Engineers. Part E, Journal of process mechanical engineering, 2021-02, Vol.235 (1), p.124-133</ispartof><rights>IMechE 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c309t-72e52becd32a97c7107c5e72804ba731e1ef92b8d702e3784783e0083dd0ced03</citedby><cites>FETCH-LOGICAL-c309t-72e52becd32a97c7107c5e72804ba731e1ef92b8d702e3784783e0083dd0ced03</cites><orcidid>0000-0003-3338-0954 ; 0000-0003-1811-4404</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/0954408920948194$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/0954408920948194$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,776,780,21799,27903,27904,43600,43601</link.rule.ids></links><search><creatorcontrib>Javanmard, Mohsen</creatorcontrib><creatorcontrib>Salmani, Hossein</creatorcontrib><creatorcontrib>Taheri, Mohammad Hasan</creatorcontrib><creatorcontrib>Askari, Nematollah</creatorcontrib><creatorcontrib>Kazemi, Mohammad Ali</creatorcontrib><title>Heat transfer of a radial, nanofluid water-graphene oxide hydromagnetic flow between coaxial pipes with a variable radius ratio</title><title>Proceedings of the Institution of Mechanical Engineers. Part E, Journal of process mechanical engineering</title><description>The main objective of the present study is to analyze the heat transfer of a water-graphene oxide nanofluid flow between coaxial pipes, analytically. The radius ratio of pipes is variable, and a radial constant magnetic field applies to the pipes. Moreover, the Robin boundary condition is considered on the pipe’s walls. As a novelty, the exact solution is utilized to obtain the velocity distribution; further, the energy equation is solved employing the semi-analytical collocation method. The results reveal that the enhancement of nanoparticle volume fraction and radius ratio increases the dimensionless shear stress on pipes walls by 2% and 100%, respectively; consequently, the friction on walls grows. Though, the magnetic parameter has the contrary effect. Furthermore, it is observed the Eckert number augmentation decuples the bulk temperature and the heat transfer. Moreover, when the outer pipe Biot number and radius ratio increase, the bulk temperature and the heat transfer augment more than 90%. However, the magnetic parameter and nanoparticle volume fraction have a contrary effect. Also, as the inner pipe Biot number rises, we do not observe a constant pattern for the dimensionless temperature and heat transfer rate variation.</description><subject>Biot number</subject><subject>Boundary conditions</subject><subject>Collocation methods</subject><subject>Energy distribution</subject><subject>Exact solutions</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Graphene</subject><subject>Heat transfer</subject><subject>Magnetic properties</subject><subject>Mathematical analysis</subject><subject>Nanofluids</subject><subject>Nanoparticles</subject><subject>Parameters</subject><subject>Pipes</subject><subject>Shear stress</subject><subject>Velocity distribution</subject><subject>Walls</subject><issn>0954-4089</issn><issn>2041-3009</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kEFLw0AQhRdRsFbvHhe8Gp3dbN3kKEWtUPCi5zDJTtotaTbubk178q-bWkEQnMs7vPe-gcfYpYAbIbS-hXyiFGS5hFxlIldHbCRBiSQFyI_ZaG8ne_-UnYWwguEU6BH7nBFGHj22oSbPXc2RezQWm2veYuvqZmMN7zGSTxYeuyW1xN3WGuLLnfFujYuWoq143bielxR7opZXDrcDgne2o8B7G5cD9gO9xbKhb_4mDBKtO2cnNTaBLn50zN4eH16ns2T-8vQ8vZ8nVQp5TLSkiSypMqnEXFdagK4mpGUGqkSdChJU57LMjAZJqc6UzlICyFJjoCID6ZhdHbidd-8bCrFYuY1vh5eFVNmdBj0BNaTgkKq8C8FTXXTertHvCgHFfubi78xDJTlUAi7oF_pv_gtD5H3n</recordid><startdate>202102</startdate><enddate>202102</enddate><creator>Javanmard, Mohsen</creator><creator>Salmani, Hossein</creator><creator>Taheri, Mohammad Hasan</creator><creator>Askari, Nematollah</creator><creator>Kazemi, Mohammad Ali</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><orcidid>https://orcid.org/0000-0003-3338-0954</orcidid><orcidid>https://orcid.org/0000-0003-1811-4404</orcidid></search><sort><creationdate>202102</creationdate><title>Heat transfer of a radial, nanofluid water-graphene oxide hydromagnetic flow between coaxial pipes with a variable radius ratio</title><author>Javanmard, Mohsen ; Salmani, Hossein ; Taheri, Mohammad Hasan ; Askari, Nematollah ; Kazemi, Mohammad Ali</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c309t-72e52becd32a97c7107c5e72804ba731e1ef92b8d702e3784783e0083dd0ced03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biot number</topic><topic>Boundary conditions</topic><topic>Collocation methods</topic><topic>Energy distribution</topic><topic>Exact solutions</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Graphene</topic><topic>Heat transfer</topic><topic>Magnetic properties</topic><topic>Mathematical analysis</topic><topic>Nanofluids</topic><topic>Nanoparticles</topic><topic>Parameters</topic><topic>Pipes</topic><topic>Shear stress</topic><topic>Velocity distribution</topic><topic>Walls</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Javanmard, Mohsen</creatorcontrib><creatorcontrib>Salmani, Hossein</creatorcontrib><creatorcontrib>Taheri, Mohammad Hasan</creatorcontrib><creatorcontrib>Askari, Nematollah</creatorcontrib><creatorcontrib>Kazemi, Mohammad Ali</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>Proceedings of the Institution of Mechanical Engineers. Part E, Journal of process mechanical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Javanmard, Mohsen</au><au>Salmani, Hossein</au><au>Taheri, Mohammad Hasan</au><au>Askari, Nematollah</au><au>Kazemi, Mohammad Ali</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heat transfer of a radial, nanofluid water-graphene oxide hydromagnetic flow between coaxial pipes with a variable radius ratio</atitle><jtitle>Proceedings of the Institution of Mechanical Engineers. Part E, Journal of process mechanical engineering</jtitle><date>2021-02</date><risdate>2021</risdate><volume>235</volume><issue>1</issue><spage>124</spage><epage>133</epage><pages>124-133</pages><issn>0954-4089</issn><eissn>2041-3009</eissn><abstract>The main objective of the present study is to analyze the heat transfer of a water-graphene oxide nanofluid flow between coaxial pipes, analytically. The radius ratio of pipes is variable, and a radial constant magnetic field applies to the pipes. Moreover, the Robin boundary condition is considered on the pipe’s walls. As a novelty, the exact solution is utilized to obtain the velocity distribution; further, the energy equation is solved employing the semi-analytical collocation method. The results reveal that the enhancement of nanoparticle volume fraction and radius ratio increases the dimensionless shear stress on pipes walls by 2% and 100%, respectively; consequently, the friction on walls grows. Though, the magnetic parameter has the contrary effect. Furthermore, it is observed the Eckert number augmentation decuples the bulk temperature and the heat transfer. Moreover, when the outer pipe Biot number and radius ratio increase, the bulk temperature and the heat transfer augment more than 90%. However, the magnetic parameter and nanoparticle volume fraction have a contrary effect. Also, as the inner pipe Biot number rises, we do not observe a constant pattern for the dimensionless temperature and heat transfer rate variation.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/0954408920948194</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-3338-0954</orcidid><orcidid>https://orcid.org/0000-0003-1811-4404</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0954-4089 |
ispartof | Proceedings of the Institution of Mechanical Engineers. Part E, Journal of process mechanical engineering, 2021-02, Vol.235 (1), p.124-133 |
issn | 0954-4089 2041-3009 |
language | eng |
recordid | cdi_proquest_journals_2486707504 |
source | SAGE Complete A-Z List |
subjects | Biot number Boundary conditions Collocation methods Energy distribution Exact solutions Fluid dynamics Fluid flow Graphene Heat transfer Magnetic properties Mathematical analysis Nanofluids Nanoparticles Parameters Pipes Shear stress Velocity distribution Walls |
title | Heat transfer of a radial, nanofluid water-graphene oxide hydromagnetic flow between coaxial pipes with a variable radius ratio |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T02%3A45%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heat%20transfer%20of%20a%20radial,%20nanofluid%20water-graphene%20oxide%20hydromagnetic%20flow%20between%20coaxial%20pipes%20with%20a%20variable%20radius%20ratio&rft.jtitle=Proceedings%20of%20the%20Institution%20of%20Mechanical%20Engineers.%20Part%20E,%20Journal%20of%20process%20mechanical%20engineering&rft.au=Javanmard,%20Mohsen&rft.date=2021-02&rft.volume=235&rft.issue=1&rft.spage=124&rft.epage=133&rft.pages=124-133&rft.issn=0954-4089&rft.eissn=2041-3009&rft_id=info:doi/10.1177/0954408920948194&rft_dat=%3Cproquest_cross%3E2486707504%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2486707504&rft_id=info:pmid/&rft_sage_id=10.1177_0954408920948194&rfr_iscdi=true |