Asymmetric indirect-driven self-sensing actuation and its application to piezoelectric systems

Self-sensing actuators use a single piezoelectric element as actuators and sensors simultaneously. This paper proposes the asymmetric indirect-driven self-sensing actuation (AIDSSA) circuit to realize the concept of self-sensing in piezoelectric-actuated systems. Unlike traditional circuits relying...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transactions of the Institute of Measurement and Control 2021-02, Vol.43 (4), p.802-811
Hauptverfasser: Hu, Bin, Pang, Chee Khiang, Wan, Jie, Cao, Shuyu, Tan, Jern Khang, Li, Hui, Wang, Jianyi, Guo, Guoxiao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 811
container_issue 4
container_start_page 802
container_title Transactions of the Institute of Measurement and Control
container_volume 43
creator Hu, Bin
Pang, Chee Khiang
Wan, Jie
Cao, Shuyu
Tan, Jern Khang
Li, Hui
Wang, Jianyi
Guo, Guoxiao
description Self-sensing actuators use a single piezoelectric element as actuators and sensors simultaneously. This paper proposes the asymmetric indirect-driven self-sensing actuation (AIDSSA) circuit to realize the concept of self-sensing in piezoelectric-actuated systems. Unlike traditional circuits relying on differential amplifiers, the AIDSSA circuit is constructed with only op-amps and uses negative feedback to reject the common-mode interferences from the control command. The new circuit requires simpler conditions of component matching and is able to sense the mechanical responses with a uniform gain and without a phase lag. The actuator is able to achieve full-stroke actuation while sensing is performed, because AIDSSA introduces no undesirable dynamics into the control loop. For the first time, the sensing and actuation transfer functions in self-sensing actuators have become fully decoupled at all frequencies. The investigation takes the form of an industrial application of hard disk drives, and demonstrates the usefulness the circuit in complex positioning systems. Experimental results show that the position error variance, a measure of disturbance rejection capability, has been improved by about 15% in the track-following mode relative to the same servo before modifications.
doi_str_mv 10.1177/0142331220938208
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2486707377</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0142331220938208</sage_id><sourcerecordid>2486707377</sourcerecordid><originalsourceid>FETCH-LOGICAL-c309t-14c3be83d34c4127932e89a3b7d7a392d925ba9b882cdaa5659adbe77d686f1f3</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoWKt7lwHX0bw6SZal-IKCG906ZJJMSZmXualQf70zjCAIri6cx3fhIHTN6C1jSt1RJrkQjHNqhOZUn6AFk0oRKgpzihaTTSb_HF0A7CmlUhZygd7XcGzbkFN0OHY-puAy8Sl-hg5DaGoCoYPY7bB1-WBz7DtsO49jBmyHoYlu1nKPhxi--tCM_YkFR8ihhUt0VtsGwtXPXaK3h_vXzRPZvjw-b9Zb4gQ1mTDpRBW08EI6ybgyggdtrKiUV1YY7g1fVdZUWnPnrV0VK2N9FZTyhS5qVoslupm5Q-o_DgFyue8PqRtfllzqQlEllBpTdE651AOkUJdDiq1Nx5LRclqx_LviWCFzBewu_EL_zX8DN8ty8A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2486707377</pqid></control><display><type>article</type><title>Asymmetric indirect-driven self-sensing actuation and its application to piezoelectric systems</title><source>SAGE Complete A-Z List</source><creator>Hu, Bin ; Pang, Chee Khiang ; Wan, Jie ; Cao, Shuyu ; Tan, Jern Khang ; Li, Hui ; Wang, Jianyi ; Guo, Guoxiao</creator><creatorcontrib>Hu, Bin ; Pang, Chee Khiang ; Wan, Jie ; Cao, Shuyu ; Tan, Jern Khang ; Li, Hui ; Wang, Jianyi ; Guo, Guoxiao</creatorcontrib><description>Self-sensing actuators use a single piezoelectric element as actuators and sensors simultaneously. This paper proposes the asymmetric indirect-driven self-sensing actuation (AIDSSA) circuit to realize the concept of self-sensing in piezoelectric-actuated systems. Unlike traditional circuits relying on differential amplifiers, the AIDSSA circuit is constructed with only op-amps and uses negative feedback to reject the common-mode interferences from the control command. The new circuit requires simpler conditions of component matching and is able to sense the mechanical responses with a uniform gain and without a phase lag. The actuator is able to achieve full-stroke actuation while sensing is performed, because AIDSSA introduces no undesirable dynamics into the control loop. For the first time, the sensing and actuation transfer functions in self-sensing actuators have become fully decoupled at all frequencies. The investigation takes the form of an industrial application of hard disk drives, and demonstrates the usefulness the circuit in complex positioning systems. Experimental results show that the position error variance, a measure of disturbance rejection capability, has been improved by about 15% in the track-following mode relative to the same servo before modifications.</description><identifier>ISSN: 0142-3312</identifier><identifier>EISSN: 1477-0369</identifier><identifier>DOI: 10.1177/0142331220938208</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Actuation ; Actuators ; Asymmetry ; Circuits ; Differential amplifiers ; Disk drives ; Error analysis ; Industrial applications ; Negative feedback ; Operational amplifiers ; Phase lag ; Piezoelectricity ; Position errors ; Position measurement ; Transfer functions</subject><ispartof>Transactions of the Institute of Measurement and Control, 2021-02, Vol.43 (4), p.802-811</ispartof><rights>The Author(s) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c309t-14c3be83d34c4127932e89a3b7d7a392d925ba9b882cdaa5659adbe77d686f1f3</citedby><cites>FETCH-LOGICAL-c309t-14c3be83d34c4127932e89a3b7d7a392d925ba9b882cdaa5659adbe77d686f1f3</cites><orcidid>0000-0001-8260-5879</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/0142331220938208$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/0142331220938208$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,777,781,21800,27905,27906,43602,43603</link.rule.ids></links><search><creatorcontrib>Hu, Bin</creatorcontrib><creatorcontrib>Pang, Chee Khiang</creatorcontrib><creatorcontrib>Wan, Jie</creatorcontrib><creatorcontrib>Cao, Shuyu</creatorcontrib><creatorcontrib>Tan, Jern Khang</creatorcontrib><creatorcontrib>Li, Hui</creatorcontrib><creatorcontrib>Wang, Jianyi</creatorcontrib><creatorcontrib>Guo, Guoxiao</creatorcontrib><title>Asymmetric indirect-driven self-sensing actuation and its application to piezoelectric systems</title><title>Transactions of the Institute of Measurement and Control</title><description>Self-sensing actuators use a single piezoelectric element as actuators and sensors simultaneously. This paper proposes the asymmetric indirect-driven self-sensing actuation (AIDSSA) circuit to realize the concept of self-sensing in piezoelectric-actuated systems. Unlike traditional circuits relying on differential amplifiers, the AIDSSA circuit is constructed with only op-amps and uses negative feedback to reject the common-mode interferences from the control command. The new circuit requires simpler conditions of component matching and is able to sense the mechanical responses with a uniform gain and without a phase lag. The actuator is able to achieve full-stroke actuation while sensing is performed, because AIDSSA introduces no undesirable dynamics into the control loop. For the first time, the sensing and actuation transfer functions in self-sensing actuators have become fully decoupled at all frequencies. The investigation takes the form of an industrial application of hard disk drives, and demonstrates the usefulness the circuit in complex positioning systems. Experimental results show that the position error variance, a measure of disturbance rejection capability, has been improved by about 15% in the track-following mode relative to the same servo before modifications.</description><subject>Actuation</subject><subject>Actuators</subject><subject>Asymmetry</subject><subject>Circuits</subject><subject>Differential amplifiers</subject><subject>Disk drives</subject><subject>Error analysis</subject><subject>Industrial applications</subject><subject>Negative feedback</subject><subject>Operational amplifiers</subject><subject>Phase lag</subject><subject>Piezoelectricity</subject><subject>Position errors</subject><subject>Position measurement</subject><subject>Transfer functions</subject><issn>0142-3312</issn><issn>1477-0369</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLAzEUhYMoWKt7lwHX0bw6SZal-IKCG906ZJJMSZmXualQf70zjCAIri6cx3fhIHTN6C1jSt1RJrkQjHNqhOZUn6AFk0oRKgpzihaTTSb_HF0A7CmlUhZygd7XcGzbkFN0OHY-puAy8Sl-hg5DaGoCoYPY7bB1-WBz7DtsO49jBmyHoYlu1nKPhxi--tCM_YkFR8ihhUt0VtsGwtXPXaK3h_vXzRPZvjw-b9Zb4gQ1mTDpRBW08EI6ybgyggdtrKiUV1YY7g1fVdZUWnPnrV0VK2N9FZTyhS5qVoslupm5Q-o_DgFyue8PqRtfllzqQlEllBpTdE651AOkUJdDiq1Nx5LRclqx_LviWCFzBewu_EL_zX8DN8ty8A</recordid><startdate>202102</startdate><enddate>202102</enddate><creator>Hu, Bin</creator><creator>Pang, Chee Khiang</creator><creator>Wan, Jie</creator><creator>Cao, Shuyu</creator><creator>Tan, Jern Khang</creator><creator>Li, Hui</creator><creator>Wang, Jianyi</creator><creator>Guo, Guoxiao</creator><general>SAGE Publications</general><general>Sage Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8260-5879</orcidid></search><sort><creationdate>202102</creationdate><title>Asymmetric indirect-driven self-sensing actuation and its application to piezoelectric systems</title><author>Hu, Bin ; Pang, Chee Khiang ; Wan, Jie ; Cao, Shuyu ; Tan, Jern Khang ; Li, Hui ; Wang, Jianyi ; Guo, Guoxiao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c309t-14c3be83d34c4127932e89a3b7d7a392d925ba9b882cdaa5659adbe77d686f1f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Actuation</topic><topic>Actuators</topic><topic>Asymmetry</topic><topic>Circuits</topic><topic>Differential amplifiers</topic><topic>Disk drives</topic><topic>Error analysis</topic><topic>Industrial applications</topic><topic>Negative feedback</topic><topic>Operational amplifiers</topic><topic>Phase lag</topic><topic>Piezoelectricity</topic><topic>Position errors</topic><topic>Position measurement</topic><topic>Transfer functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Bin</creatorcontrib><creatorcontrib>Pang, Chee Khiang</creatorcontrib><creatorcontrib>Wan, Jie</creatorcontrib><creatorcontrib>Cao, Shuyu</creatorcontrib><creatorcontrib>Tan, Jern Khang</creatorcontrib><creatorcontrib>Li, Hui</creatorcontrib><creatorcontrib>Wang, Jianyi</creatorcontrib><creatorcontrib>Guo, Guoxiao</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Transactions of the Institute of Measurement and Control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Bin</au><au>Pang, Chee Khiang</au><au>Wan, Jie</au><au>Cao, Shuyu</au><au>Tan, Jern Khang</au><au>Li, Hui</au><au>Wang, Jianyi</au><au>Guo, Guoxiao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Asymmetric indirect-driven self-sensing actuation and its application to piezoelectric systems</atitle><jtitle>Transactions of the Institute of Measurement and Control</jtitle><date>2021-02</date><risdate>2021</risdate><volume>43</volume><issue>4</issue><spage>802</spage><epage>811</epage><pages>802-811</pages><issn>0142-3312</issn><eissn>1477-0369</eissn><abstract>Self-sensing actuators use a single piezoelectric element as actuators and sensors simultaneously. This paper proposes the asymmetric indirect-driven self-sensing actuation (AIDSSA) circuit to realize the concept of self-sensing in piezoelectric-actuated systems. Unlike traditional circuits relying on differential amplifiers, the AIDSSA circuit is constructed with only op-amps and uses negative feedback to reject the common-mode interferences from the control command. The new circuit requires simpler conditions of component matching and is able to sense the mechanical responses with a uniform gain and without a phase lag. The actuator is able to achieve full-stroke actuation while sensing is performed, because AIDSSA introduces no undesirable dynamics into the control loop. For the first time, the sensing and actuation transfer functions in self-sensing actuators have become fully decoupled at all frequencies. The investigation takes the form of an industrial application of hard disk drives, and demonstrates the usefulness the circuit in complex positioning systems. Experimental results show that the position error variance, a measure of disturbance rejection capability, has been improved by about 15% in the track-following mode relative to the same servo before modifications.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/0142331220938208</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-8260-5879</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0142-3312
ispartof Transactions of the Institute of Measurement and Control, 2021-02, Vol.43 (4), p.802-811
issn 0142-3312
1477-0369
language eng
recordid cdi_proquest_journals_2486707377
source SAGE Complete A-Z List
subjects Actuation
Actuators
Asymmetry
Circuits
Differential amplifiers
Disk drives
Error analysis
Industrial applications
Negative feedback
Operational amplifiers
Phase lag
Piezoelectricity
Position errors
Position measurement
Transfer functions
title Asymmetric indirect-driven self-sensing actuation and its application to piezoelectric systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T15%3A27%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Asymmetric%20indirect-driven%20self-sensing%20actuation%20and%20its%20application%20to%20piezoelectric%20systems&rft.jtitle=Transactions%20of%20the%20Institute%20of%20Measurement%20and%20Control&rft.au=Hu,%20Bin&rft.date=2021-02&rft.volume=43&rft.issue=4&rft.spage=802&rft.epage=811&rft.pages=802-811&rft.issn=0142-3312&rft.eissn=1477-0369&rft_id=info:doi/10.1177/0142331220938208&rft_dat=%3Cproquest_cross%3E2486707377%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2486707377&rft_id=info:pmid/&rft_sage_id=10.1177_0142331220938208&rfr_iscdi=true