High-accuracy long-read amplicon sequences using unique molecular identifiers with Nanopore or PacBio sequencing

High-throughput amplicon sequencing of large genomic regions remains challenging for short-read technologies. Here, we report a high-throughput amplicon sequencing approach combining unique molecular identifiers (UMIs) with Oxford Nanopore Technologies (ONT) or Pacific Biosciences circular consensus...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature methods 2021-02, Vol.18 (2), p.165-169
Hauptverfasser: Karst, Søren M., Ziels, Ryan M., Kirkegaard, Rasmus H., Sørensen, Emil A., McDonald, Daniel, Zhu, Qiyun, Knight, Rob, Albertsen, Mads
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 169
container_issue 2
container_start_page 165
container_title Nature methods
container_volume 18
creator Karst, Søren M.
Ziels, Ryan M.
Kirkegaard, Rasmus H.
Sørensen, Emil A.
McDonald, Daniel
Zhu, Qiyun
Knight, Rob
Albertsen, Mads
description High-throughput amplicon sequencing of large genomic regions remains challenging for short-read technologies. Here, we report a high-throughput amplicon sequencing approach combining unique molecular identifiers (UMIs) with Oxford Nanopore Technologies (ONT) or Pacific Biosciences circular consensus sequencing, yielding high-accuracy single-molecule consensus sequences of large genomic regions. We applied our approach to sequence ribosomal RNA operon amplicons (~4,500 bp) and genomic sequences (>10,000 bp) of reference microbial communities in which we observed a chimera rate
doi_str_mv 10.1038/s41592-020-01041-y
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2486620343</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A655717287</galeid><sourcerecordid>A655717287</sourcerecordid><originalsourceid>FETCH-LOGICAL-c486t-133c5002019e4bd1ccfc8e574708689f6b048f7a2c4b6beb94fd9ba50c3919eb3</originalsourceid><addsrcrecordid>eNp9UU1LHTEUDVKpVv0DLkqg62g-52NppdaCqIt2HTKZmzEyk0yTGeT9-0afr1IoksUNN-fcm3MOQqeMnjEqmvMsmWo5oZwSyqhkZLOHDpmSDakZVR92d9qyA_Qp50dKhZBcfUQHpQrOpTxE87UfHoixdk3GbvAYw0ASmB6baR69jQFn-L1CsJDxmn0Y8Bp8aeApjmDX0STsewiLdx5Sxk9-ecC3JsQ5JsAx4Xtjv_q4G1L4x2jfmTHDyWs9Qr-uvv28vCY3d99_XF7cECubaiFMCKtokcZakF3PrHW2AVXLmjZV07qqo7JxteFWdlUHXStd33ZGUSvaQunEEfqynTunWHbnRT_GNYWyUvOyoeK0ePCGGswI2gcXl-LD5LPVF5VSNat5UxfU2X9Q5fQwPXsEzpf-PwS-JdgUc07g9Jz8ZNJGM6qfs9Pb7HQRqF-y05tC-vz647WboP9L2YVVAGILyOUpDJDeJL0z9g9ADKUf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2486620343</pqid></control><display><type>article</type><title>High-accuracy long-read amplicon sequences using unique molecular identifiers with Nanopore or PacBio sequencing</title><source>MEDLINE</source><source>Nature Journals Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>Karst, Søren M. ; Ziels, Ryan M. ; Kirkegaard, Rasmus H. ; Sørensen, Emil A. ; McDonald, Daniel ; Zhu, Qiyun ; Knight, Rob ; Albertsen, Mads</creator><creatorcontrib>Karst, Søren M. ; Ziels, Ryan M. ; Kirkegaard, Rasmus H. ; Sørensen, Emil A. ; McDonald, Daniel ; Zhu, Qiyun ; Knight, Rob ; Albertsen, Mads</creatorcontrib><description>High-throughput amplicon sequencing of large genomic regions remains challenging for short-read technologies. Here, we report a high-throughput amplicon sequencing approach combining unique molecular identifiers (UMIs) with Oxford Nanopore Technologies (ONT) or Pacific Biosciences circular consensus sequencing, yielding high-accuracy single-molecule consensus sequences of large genomic regions. We applied our approach to sequence ribosomal RNA operon amplicons (~4,500 bp) and genomic sequences (&gt;10,000 bp) of reference microbial communities in which we observed a chimera rate &lt;0.02%. To reach a mean UMI consensus error rate &lt;0.01%, a UMI read coverage of 15× (ONT R10.3), 25× (ONT R9.4.1) and 3× (Pacific Biosciences circular consensus sequencing) is needed, which provides a mean error rate of 0.0042%, 0.0041% and 0.0007%, respectively. This work presents a sequencing strategy based on unique molecular identifiers that improves long-read consensus sequence accuracy of targeted amplicons as well as shotgun whole-genome fragments.</description><identifier>ISSN: 1548-7091</identifier><identifier>EISSN: 1548-7105</identifier><identifier>DOI: 10.1038/s41592-020-01041-y</identifier><identifier>PMID: 33432244</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/337 ; 631/61 ; 631/61/514/1948 ; Accuracy ; Bioinformatics ; Biological Microscopy ; Biological Techniques ; Biomedical and Life Sciences ; Biomedical Engineering/Biotechnology ; Conserved sequence ; DNA sequencing ; Genomes ; Genomics ; High-Throughput Nucleotide Sequencing - methods ; Life Sciences ; Methods ; Microbial activity ; Microbiota ; Microorganisms ; Nanopores ; Nucleotide sequence ; Nucleotide sequencing ; Porosity ; Proteomics ; rRNA ; Workflow</subject><ispartof>Nature methods, 2021-02, Vol.18 (2), p.165-169</ispartof><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2021</rights><rights>COPYRIGHT 2021 Nature Publishing Group</rights><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c486t-133c5002019e4bd1ccfc8e574708689f6b048f7a2c4b6beb94fd9ba50c3919eb3</citedby><cites>FETCH-LOGICAL-c486t-133c5002019e4bd1ccfc8e574708689f6b048f7a2c4b6beb94fd9ba50c3919eb3</cites><orcidid>0000-0002-6151-190X ; 0000-0002-0233-160X ; 0000-0003-3705-6078 ; 0000-0003-0876-9060 ; 0000-0002-3568-6271 ; 0000-0002-0853-992X ; 0000-0003-3349-3617</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41592-020-01041-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41592-020-01041-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33432244$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Karst, Søren M.</creatorcontrib><creatorcontrib>Ziels, Ryan M.</creatorcontrib><creatorcontrib>Kirkegaard, Rasmus H.</creatorcontrib><creatorcontrib>Sørensen, Emil A.</creatorcontrib><creatorcontrib>McDonald, Daniel</creatorcontrib><creatorcontrib>Zhu, Qiyun</creatorcontrib><creatorcontrib>Knight, Rob</creatorcontrib><creatorcontrib>Albertsen, Mads</creatorcontrib><title>High-accuracy long-read amplicon sequences using unique molecular identifiers with Nanopore or PacBio sequencing</title><title>Nature methods</title><addtitle>Nat Methods</addtitle><addtitle>Nat Methods</addtitle><description>High-throughput amplicon sequencing of large genomic regions remains challenging for short-read technologies. Here, we report a high-throughput amplicon sequencing approach combining unique molecular identifiers (UMIs) with Oxford Nanopore Technologies (ONT) or Pacific Biosciences circular consensus sequencing, yielding high-accuracy single-molecule consensus sequences of large genomic regions. We applied our approach to sequence ribosomal RNA operon amplicons (~4,500 bp) and genomic sequences (&gt;10,000 bp) of reference microbial communities in which we observed a chimera rate &lt;0.02%. To reach a mean UMI consensus error rate &lt;0.01%, a UMI read coverage of 15× (ONT R10.3), 25× (ONT R9.4.1) and 3× (Pacific Biosciences circular consensus sequencing) is needed, which provides a mean error rate of 0.0042%, 0.0041% and 0.0007%, respectively. This work presents a sequencing strategy based on unique molecular identifiers that improves long-read consensus sequence accuracy of targeted amplicons as well as shotgun whole-genome fragments.</description><subject>631/337</subject><subject>631/61</subject><subject>631/61/514/1948</subject><subject>Accuracy</subject><subject>Bioinformatics</subject><subject>Biological Microscopy</subject><subject>Biological Techniques</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering/Biotechnology</subject><subject>Conserved sequence</subject><subject>DNA sequencing</subject><subject>Genomes</subject><subject>Genomics</subject><subject>High-Throughput Nucleotide Sequencing - methods</subject><subject>Life Sciences</subject><subject>Methods</subject><subject>Microbial activity</subject><subject>Microbiota</subject><subject>Microorganisms</subject><subject>Nanopores</subject><subject>Nucleotide sequence</subject><subject>Nucleotide sequencing</subject><subject>Porosity</subject><subject>Proteomics</subject><subject>rRNA</subject><subject>Workflow</subject><issn>1548-7091</issn><issn>1548-7105</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9UU1LHTEUDVKpVv0DLkqg62g-52NppdaCqIt2HTKZmzEyk0yTGeT9-0afr1IoksUNN-fcm3MOQqeMnjEqmvMsmWo5oZwSyqhkZLOHDpmSDakZVR92d9qyA_Qp50dKhZBcfUQHpQrOpTxE87UfHoixdk3GbvAYw0ASmB6baR69jQFn-L1CsJDxmn0Y8Bp8aeApjmDX0STsewiLdx5Sxk9-ecC3JsQ5JsAx4Xtjv_q4G1L4x2jfmTHDyWs9Qr-uvv28vCY3d99_XF7cECubaiFMCKtokcZakF3PrHW2AVXLmjZV07qqo7JxteFWdlUHXStd33ZGUSvaQunEEfqynTunWHbnRT_GNYWyUvOyoeK0ePCGGswI2gcXl-LD5LPVF5VSNat5UxfU2X9Q5fQwPXsEzpf-PwS-JdgUc07g9Jz8ZNJGM6qfs9Pb7HQRqF-y05tC-vz647WboP9L2YVVAGILyOUpDJDeJL0z9g9ADKUf</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Karst, Søren M.</creator><creator>Ziels, Ryan M.</creator><creator>Kirkegaard, Rasmus H.</creator><creator>Sørensen, Emil A.</creator><creator>McDonald, Daniel</creator><creator>Zhu, Qiyun</creator><creator>Knight, Rob</creator><creator>Albertsen, Mads</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QO</scope><scope>7SS</scope><scope>7TK</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>RC3</scope><orcidid>https://orcid.org/0000-0002-6151-190X</orcidid><orcidid>https://orcid.org/0000-0002-0233-160X</orcidid><orcidid>https://orcid.org/0000-0003-3705-6078</orcidid><orcidid>https://orcid.org/0000-0003-0876-9060</orcidid><orcidid>https://orcid.org/0000-0002-3568-6271</orcidid><orcidid>https://orcid.org/0000-0002-0853-992X</orcidid><orcidid>https://orcid.org/0000-0003-3349-3617</orcidid></search><sort><creationdate>20210201</creationdate><title>High-accuracy long-read amplicon sequences using unique molecular identifiers with Nanopore or PacBio sequencing</title><author>Karst, Søren M. ; Ziels, Ryan M. ; Kirkegaard, Rasmus H. ; Sørensen, Emil A. ; McDonald, Daniel ; Zhu, Qiyun ; Knight, Rob ; Albertsen, Mads</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c486t-133c5002019e4bd1ccfc8e574708689f6b048f7a2c4b6beb94fd9ba50c3919eb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>631/337</topic><topic>631/61</topic><topic>631/61/514/1948</topic><topic>Accuracy</topic><topic>Bioinformatics</topic><topic>Biological Microscopy</topic><topic>Biological Techniques</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering/Biotechnology</topic><topic>Conserved sequence</topic><topic>DNA sequencing</topic><topic>Genomes</topic><topic>Genomics</topic><topic>High-Throughput Nucleotide Sequencing - methods</topic><topic>Life Sciences</topic><topic>Methods</topic><topic>Microbial activity</topic><topic>Microbiota</topic><topic>Microorganisms</topic><topic>Nanopores</topic><topic>Nucleotide sequence</topic><topic>Nucleotide sequencing</topic><topic>Porosity</topic><topic>Proteomics</topic><topic>rRNA</topic><topic>Workflow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Karst, Søren M.</creatorcontrib><creatorcontrib>Ziels, Ryan M.</creatorcontrib><creatorcontrib>Kirkegaard, Rasmus H.</creatorcontrib><creatorcontrib>Sørensen, Emil A.</creatorcontrib><creatorcontrib>McDonald, Daniel</creatorcontrib><creatorcontrib>Zhu, Qiyun</creatorcontrib><creatorcontrib>Knight, Rob</creatorcontrib><creatorcontrib>Albertsen, Mads</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><jtitle>Nature methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Karst, Søren M.</au><au>Ziels, Ryan M.</au><au>Kirkegaard, Rasmus H.</au><au>Sørensen, Emil A.</au><au>McDonald, Daniel</au><au>Zhu, Qiyun</au><au>Knight, Rob</au><au>Albertsen, Mads</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-accuracy long-read amplicon sequences using unique molecular identifiers with Nanopore or PacBio sequencing</atitle><jtitle>Nature methods</jtitle><stitle>Nat Methods</stitle><addtitle>Nat Methods</addtitle><date>2021-02-01</date><risdate>2021</risdate><volume>18</volume><issue>2</issue><spage>165</spage><epage>169</epage><pages>165-169</pages><issn>1548-7091</issn><eissn>1548-7105</eissn><abstract>High-throughput amplicon sequencing of large genomic regions remains challenging for short-read technologies. Here, we report a high-throughput amplicon sequencing approach combining unique molecular identifiers (UMIs) with Oxford Nanopore Technologies (ONT) or Pacific Biosciences circular consensus sequencing, yielding high-accuracy single-molecule consensus sequences of large genomic regions. We applied our approach to sequence ribosomal RNA operon amplicons (~4,500 bp) and genomic sequences (&gt;10,000 bp) of reference microbial communities in which we observed a chimera rate &lt;0.02%. To reach a mean UMI consensus error rate &lt;0.01%, a UMI read coverage of 15× (ONT R10.3), 25× (ONT R9.4.1) and 3× (Pacific Biosciences circular consensus sequencing) is needed, which provides a mean error rate of 0.0042%, 0.0041% and 0.0007%, respectively. This work presents a sequencing strategy based on unique molecular identifiers that improves long-read consensus sequence accuracy of targeted amplicons as well as shotgun whole-genome fragments.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>33432244</pmid><doi>10.1038/s41592-020-01041-y</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-6151-190X</orcidid><orcidid>https://orcid.org/0000-0002-0233-160X</orcidid><orcidid>https://orcid.org/0000-0003-3705-6078</orcidid><orcidid>https://orcid.org/0000-0003-0876-9060</orcidid><orcidid>https://orcid.org/0000-0002-3568-6271</orcidid><orcidid>https://orcid.org/0000-0002-0853-992X</orcidid><orcidid>https://orcid.org/0000-0003-3349-3617</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1548-7091
ispartof Nature methods, 2021-02, Vol.18 (2), p.165-169
issn 1548-7091
1548-7105
language eng
recordid cdi_proquest_journals_2486620343
source MEDLINE; Nature Journals Online; SpringerLink Journals - AutoHoldings
subjects 631/337
631/61
631/61/514/1948
Accuracy
Bioinformatics
Biological Microscopy
Biological Techniques
Biomedical and Life Sciences
Biomedical Engineering/Biotechnology
Conserved sequence
DNA sequencing
Genomes
Genomics
High-Throughput Nucleotide Sequencing - methods
Life Sciences
Methods
Microbial activity
Microbiota
Microorganisms
Nanopores
Nucleotide sequence
Nucleotide sequencing
Porosity
Proteomics
rRNA
Workflow
title High-accuracy long-read amplicon sequences using unique molecular identifiers with Nanopore or PacBio sequencing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T20%3A59%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-accuracy%20long-read%20amplicon%20sequences%20using%20unique%20molecular%20identifiers%20with%20Nanopore%20or%20PacBio%20sequencing&rft.jtitle=Nature%20methods&rft.au=Karst,%20S%C3%B8ren%20M.&rft.date=2021-02-01&rft.volume=18&rft.issue=2&rft.spage=165&rft.epage=169&rft.pages=165-169&rft.issn=1548-7091&rft.eissn=1548-7105&rft_id=info:doi/10.1038/s41592-020-01041-y&rft_dat=%3Cgale_proqu%3EA655717287%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2486620343&rft_id=info:pmid/33432244&rft_galeid=A655717287&rfr_iscdi=true